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General Relativity and Gravitational Waves:

Session 3. The Einstein Equation

Thomas A. Moore — Les Houches — July 5, 2018
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~ Overview of this session:

3.2 The Stress-Energy Tensor v
. 3.3 The Riemann Tensor
' 3.4 Constructing the Einstein Equation

3.5 Is Local Energy Conservation Geometrically =
Necessary?

" 3.6 Does a Gravitational Field have Energy? .
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Find a tensor generalization of the Newtonian
Poisson equation: V%¢ = 42Gp.

Two questio'ns: : |
1. Is p mass density or energy density?
2. How does p transform?

‘ Argument that p must be energy: thought experiment
involving a box containing an electron-position pair.




Dust is a fluid whose particles in a sufficiently small
neighborhood all move with the same velocity.

Consider a tiny box containing N dust particles having
volume Vj in a LIF where the particles are at rest.
Number density is 1o = N/ V.

In a different LIF where the box is moving with speed v,

the box is Lorentz-contracted and so has volume V = V1 — 2.
Number density is: n = N/V = N/Vopv1 —v2 = ng/V1 — v2.




0 does ene rg Y dens1t .
transform7 .

Note that in the second LIF, we can write:

ut

| vgpu?
=

vyu’ |
t|

VU

A=)

50 we can write:

N N -
n—=— = = NoU

V Vv()\/l—’U2

= (nout)(mut) = (ngm)utu? = poutut




- 0 doe S ene T gy dens1t -

So p must be the time component of a second-rank tensor
TH = poutu” (for dust)

[ts other components:

e pou’u® = (ngm)utux

= (nou")mu” = r-momentum density

~Alternatively:

| Av, dt)p
= (nou’)m(u'vg) = np'vy = - Zldt 2

= energy flux in the x-direction
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At every location, divide up particles into dust classes, then add the
dust stress-energies. If bulk fluid is at rest, most sums will cancel

t

except terms like pou®u® = po(uv,)(ulv,) = pvZ. So:

| -,00

0
0

' 0 po
TR
=5 | G0

0

0 0]
0 0

0 po|

(for a perfect fluid at rest in a LIF)

| Tensor form: 1TH" = (,00 =+ po)U“UV + po 9"

THi= (Po —|—p0)utut + Do 77tt T (,00 +p0) — Po = Po

i =, —|—_p0)uxuw +pon*® =0+po =po (and similarly for %Y and T **)

T = (pg + po)utu® +pon'® =0+0 (and similarly for other off-diagonal components)
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V,T" =0 or atthe origin of a LIF: 0,1*" = 0.

Why? Consider energy flowing through a tiny box along x direction:

8T B
ox

aTtx,

o dx dy dz dt

B en T it dydadi = (- da;> dy dz dt =

‘Similar for y, z directions. Therefore net energy change from flow is

Tty th 8Ttt
g a@z ]da:dydzdt = dt dx dy dz

if energy is conserved. Therefore:

O_[@T“ 9Tt aTW ATt

= e | b 8, Tt =0
Ot —I_"@;z: + Oy T 82] o Z =
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Pressure has units of force per unit area, which in units where we measure time and distance in meters, will
be (kgm/m?)/m? = kg/m? just like energy density (kgm?/m?)/m3. What random speeds would particles
in a fluid need to have if the fluid pressure is even 1% of the fluid density in these units? What approximate
temperature Would this correspond to if the particles are electrons? (Hints: Remember that the average
of v2 will be 1 5 times the average of v?. The Newtonian approximation for the electrons’ kinetic energy is
adequate as a ﬁrst approx1mat10n and remember that kT % eV at 300 K and that an electron’s rest
energy is about 0.5 MeV.) |




- Which is a curved space?

= .1—|—462p2 2¢cp g 0
oLt 1L g BT

We need a tensor quantity that somehow identifies a curved
spacetime from an intrinsically “flat” spacetime. Candidate:
- something to do with

 (VuVy = Vo VA% = V,(V,4%) — V,(V,A%)
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Note that
VoV A = B AY) . P (A T (VAT
= 0,(8,A% + IS A7) — T'D (0sA™ + F§‘5A5) + I (a A% +I7 AP
= 0,0,A% + (8, %) A" + I'2 0, A" — aﬂAa b IgsA°+ T3 0,A° + T3 I2 AP

po= vp

VLV, A%) — V,(V,A%) =

-+ 0BAT+ (0,17)A” +W M T e g AT T e P
—M (O, T75)A" W+M+M Ladd T L A

0O ) AP

MU VB vo /Lﬁ

The quantity in parentheses is a tensor:

RBW,—(‘? 8 Rl G Rle i e

po=vp - Sva- pp




- The Riemann Tensor

Mnemo_mc “3to4is pos1t1ve twins bond 1ns1de

Rﬁuv—a +Fplﬁ Flﬁ

9. .




 Riemann Symmetries

Obvious from mnemonic: R®, = —R®

Buv Bvp
~and with Raguw = garR'g,,, we also have

Buv s
Raﬂuy SN RBa,uz/

Rogun = +Riuap
Raﬁw T Rowﬁu + Rawﬂ =
'V Ragu,, + Nolossn - V RQBW = 0 (Blanchl 1dent1ty)




 dhel :flemarm tens or evalu ate S
a the orlgm Of aLIF

At the orlgm of a LIF,

Ropuy = gavRvﬁuu = Ga~y (O — 0, )
= oDl 29’7"(&/950 + 35901/ = &fgvﬁ) |

Raﬁuu: %9a7970M+ 0u989ov — Ou0s gy
— 08947 — 0,089ou + 00059,.8)
= 500(0u089ov — 000 9us — 0v08gau + Ov0ogup)

5(0.0890w + 000agus — 9u0agvs — 0,0Gap)

Mnemonic: “inner togetherness is positive”

R = 1(303gar + 0,00gmp— 0uDagus — 0,039ay)




“Daampleproot

At the origin of a LIF,
Rgapy = $(040a98v + 0,080 — 0u080ua — 0,0agsy)
= D000+ 0,00~ DBt~ DB
= —%(anﬁgau =5 &/%gw o 8@8949,,5 5 avaﬁgau) = —Ropuw




Because of R,gu, = —Rgaur and Ragw/ = _Raﬁy,u

gp 0l 02 03 12 13 23

afl 01  Roior Roioz ooz Roiiz Roiiz (FRoizs
02  Rooo1 o202 Ro203 Ro212 (Fo2130 Fo223
03  Rozo1 HRozo2 L0303 (L0312 Foziz  FRoz2s
12 Ri201 Ri202 Ri203 Ri212 Ri213 Ri223
13 Rizo1 Riz02 Rizez Rizi2 Riziz  Ri3as
23  Ro3p1 Rasp2 HRoszps Rz Rasiz  Rasas

But we also have Roguy = +Ruvas
Also, Ruguw + Ravpy + Rapvp = 0 which is usually trivially zero:

Ro1p1 + Ro11p + Bap11 =0 Number left:

Only nontrivial: Ro123 + Ro312 + Ro213 = 0 20!



Exeroise: |
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In a two-dimensional space, only one Riemann tensor componént is possibly independent: Rgi91.

(a) Explain how and why all other components depend on this one (or are zero).

(b) We have seen that for the p,q parabolic coordinate system we have discussed in previous exercises,
only one Christoffel symbol was nonzero I'], = 2¢, where c is a constant. Show that R,y = 0 in this
case, proving purely from the metric that parabohc coordmates must describe a flat space. For fast
reference, the metric for parabolic coordinates is

| 1—|—402 2 2¢p

me—a =0l Eaokve o laetas
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Lookmg for GM —-/<;T“’” with G* = G”” and V,GM = ()

Candidate: the Ricci tensor Rg, = R" .

With upper mdlces il g”"RO‘ — e R B

It is symmetrlc RVP = g“P g“"ng ~— g“P gog I s
' — 0 g”“Ra . n
At the origin of a LIF:
V,B¥ =V, (¢"¢"7¢* R ,5.,)
= 0,[ g" Bg”"g‘)"y ! (080~ Gac + 000598~ — 0305Gary — 000~954) |
g ﬁgw’gm;(a 080 Gao + 0y000598y — 0y 0805 gary — 0,0a0495)

oy 1

= g'uﬂgyag 2(6 950y9ao — Oy aﬂaaga’y) =0 generally
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What else might G”” contain? g'“” and g'“” R

R = ¢"”Rg, = ¢° hHoa = g°Y g R (curvature scalar)

afBuy
So let’s see if we can construct something where
V. (R +bg" R+ Ag"’) = 0

The tensor gradient of the metric is zero:
at the origin of a LIF: V,¢"" = 0,9"" =0

So our problem reduces to finding b such that

YV, (R™ + bg"™ R) = 0
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The key is the B1anch1 Identity:
VoRosuw + VoRagon + ViRapre =0
Note that: ' | |
9”"9““95 'V Raﬁ,ul/ 1 977 ¢4 0P R + 877907V y Ry = 0
Vs (g'y"g““gﬁ”Raﬁw) + V(977997 Rapon) + V(977 9°" 9% Ragus) = 0
| V.0 R-2V,R" =0 = V,(R"”—1¢"R)=0
So we want to choose b = ——

2 7
R — LgMR 4 Ag” = kTH

making our field equation




* Emstem Equatlon

An important side note:
9 B* — Lg,,0"" R+ Ag,.g"" = kg T"”
R-2R +44=—R+44 =T

- We can use thlS to show that we can wrlte the Einstein
equat10n in the following form:

RM = (TH _ LgMvT) 4 Agh
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(@) Explain why V(977 ¢**¢"Y Rapue) = —V-R°. Specifically, which
symmetries does one need, and how does one rename indices?
Ropus = = Roppe Rops = = Rpops Ropus =+ Rp

MUY — 16 A .
& 2B 5 b

- (b) Use the equations below to show Rl Ly g

-RMV—%Q’LWR—I—AQ’HV:HJT“V
—R+4A = kT




We can use the Newtonian limit to determine k. We'll use pseudo-
cartesian coordinates ¢, x, y, z in nearly flat spacetime:

gt’ = n* — B where |h*7| < 1. |
92 i g =
Note that o :i(dtd'f”):du dx +utd (da;)

dT? dr \dr dt dr dt dr
5= 2 i
= Ldt dx ututd T

de2 dt?

dt

2.«
So the geodesic equation for a particle at rest: dd a:2 =

5
becomes simply

d2 ( e : - s
d—;:_— . which corresponds to a=—-Vo

So in the NéWtdnianlimit, v = 0;P




Now look at the Einstein equation. For a fluid source where pressure is
negligible compared to density, we have

it %gttT_I_Agtt = %gtthTW _I_Agtt
N — %(—1)(—Ttt+Tm—|—Tyy—|—Tyy) — A
~mp+5(-p)—A=3p—4
The left side becomes
B gtﬁgwRaﬁau = (_1)(_1)(Rtttt SR Rytyt + R*;.t)

But Ry = 0ply; — Ol gy + I, Iy — Iy Iy = 0.1,

X xo— xt

for a static field. The ytyt and ztzt components are similar, so

R"™ = 0, 1%+ 0,IY +0,If = 0,0,9+0,0,0+0,0,9=+V°®



Dar», ) energy and the
fmal Emstem equat1on(s)

We now consider the A term to be “vacuum energy or ”dark energy”
. — |

e
i 87TG

The ﬁnal-Emstem_equations are thus

GIUJ/E RMY _ %g/M/R S 87_‘_G(T/J,I/ p T,LLI/) o 87TGTa'LﬁV

or equivalently: |
: R”V = SWG(Ta’LlLlV = %g'uVTau)

Exerc1se Show that R —g VT ae = +AgHY 187G

VaC




GHY =R — %QMVR = 8nG(TH" + TtH,) = 8nGT

vacC

represents 10 (second-order, coupled, nonlinear differential) equations in
10 unknown metric components. We should be able to solve for g, .

But we shouldn’t be able to solve! We still have freedom to choose
coordinates! So coordinate freedom requires that G** automatically
satisfies four internal constraints so that we really have only six
independent equations. We have ensured that by choosing b so that
V,G" = 0. But this means that V 7% = 0.

So the symmetry of the Einstein equation under coordinate
transtormations requires local conservation of energy and momentum.
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Consider “dust” w1th TW = pgu“’u

0=V, T" = V,(pouu”) = u"V,(pou”) + pou”V, u*
But we must have | |

B Vy(gau‘u».o‘u“‘) —d.u You +gauu“vyuo‘ =20
- One can multiply the first equation by g, u”® and use the latter to show
Vou(pou”) =0 ~ Exercise: Do this.
. Substitute this back into the top equation to see that

p b dx

ng . 5““ﬁ) = ZZV dd:i'
du st

et e g g

| I%Luﬁu”

0= Nouatt = (




Problem: @ - —T%, So p;x([)*? ButinaLIF I — 0

Problem: in tlat spacetime we can integrate 9,7 = 0 to get
global conservation laws. But we can’t integrate V 7" = 0

in a general curved spacetime.

Problem: Noether’s theorem says that because the laws of physics

are independent of time, energy is conserved, and
independent of position, momentum is conserved

| because they are
. But what

happens when the laws involve spacetime itself? |
independent of time? What would that mean?

s G" = 8xGTH

Specific cases where the idea works: (1) When the metric has
symmetries. (2) When a region of curved spacetime is entirely

surrounded by flat spacetime.



