
General Relativity and Gravitational Waves

Session 4: Solving the Einstein Equation

4.1 Overview of this Session

In the last session, we constructed the Einstein equation, which we saw is not just a core equation in general
relativity but the core equation (even the geodesic hypothesis follows from it). However, solving the set
coupled nonlinear second-order differential equations that it represents is no easy task. In this section, we
will review methods that make solving the equation easier.

An overview of this session’s sections follows:

4.2 The Schwarzschild Solution. First, I will guide you through the task of finding an exact solution
of the Einstein equation using the Diagonal Metric Worksheet.

4.3 Interpreting the Schwarzschild Solution. This section will explore the crucial task of using the
metric to explore what the Schwarzschild solution means physically. In particular, we will discuss how
to set up a system that one might use to actually measure the Schwarzschild coordinates of events.

4.4 The Weak-Field Approximation. This section explores a different approach to solving the Einstein
equation where we assume that the field is weak enough that we can ignore nonlinear terms in the
equation. This approach will be crucial to us as we explore gravitational waves in our last session. We
will find that in such a case, electrostatic analogies can help us solve the Einstein equation.

4.6 Gravitomagnetism. Indeed, in the weak-field limit, the analogy to electromagnetism is quite com-
plete, as this section describes. We can use this analogy and our familiarity with electromagnetism to
better understand the “magnetic” aspects of general relativity.

4.5 Gauge Freedom. In the weak-field approximation we often use pseudo-cartesian coordinates t, x, y, z,
but our freedom to choose exactly how these coordinates are defined leads to freedom that (in analogy
to electromagnetism) we call gauge freedom. This section explores exactly what freedoms we have.

4.2 The Schwarzschild Solution.

In many regards, solving the Einstein equation is no different than solving any complicated set of differential
equations: (1) we use our physics and mathematical knowledge to make as good a guess for the solution as
possible, and then (2) solve the equation for any unknown features of our trial solution. In this section, we
will illustrate this process by deriving the Schwarzschild solution. Karl Schwarzschild derived this solution
in his spare time in the trenches of World War I: 1 we ought to be able to do the same much more easily in
this much more attractive setting.

The Guess. The Schwarzschild solution hopes to describe the gravitational field in the empty space sur-
rounding a spherical and static object. We can take advantage of spherical symmetry and time-independence
to make some choices about coordinates that will make solving the Einstein equation easier. First of all,
First of all, we can imagine concentric spherical surfaces surrounding the star, which we will label by a
monotonically increasing radial coordinate r that is constant on each surface. Each of these surfaces should
(by the situation’s spherical symmetry) should plausibly have the same geometry as the surface of a nor-
mal sphere in Euclidean space, so we will use ordinary spherical coordinates θ, φ to label points on those
spheres, and assume that the ordinary spherical metric applies: ds2 = r2dθ2 + r2 sin2 θdφ2 (meaning that
gθθ = r2, gφφ = r2 sin2 θ, gθφ = gφθ = 0). This portion of the metric also implicitly defines the meaning
of the r coordinate: note that the circumference of an equatorial circle (θ = constant = 1

2π, dθ = 0) is∫
ds =

∫
r sin( 1

2π)dφ = r
∫
dφ = 2πr, so we see that we have defined the r coordinate of a given spherical

surface to be the circumference of an equatorial circle on that surface divided by 2π.
Now, this part of the metric only applies to a single nested sphere: there is nothing in what we have done

so far that precludes our giving each sphere its own set of θ and φ coordinates (by having the spheres’ polar
axes point in different directions). But we can require those coordinate systems to line up by requiring that
lines of constant θ and constant φ be radial, that is, perpendicular to each spherical surface. This means that
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the r, θ, and φ basis vectors are mutually perpendicular, meaning that off-diagonal components involving r
and either of the angular coordinates should be zero. So with these coordinate choices, the metric becomes

ds2 = grrdr
2 + r2dθ2 + r2 sin2 θdφ2 (4.1)

Now, if we were to have a metric term like gtφ dt dφ, then it would suggest that the geometry of spacetime
treats positive displacements in φ differently than negative displacements, contradicting the idea of spherical
symmetry. Therefore, we should be able to choose gtφ = 0 when we have spherical symmetry. A similar
argument applies to gtθ. A nonzero value for gtr would not violate spherical symmetry, but for a static source,
we would expect to have time-reversal symmetry, which would be violated if this term were nonzero. So on
the basis of these symmetries, we should be able define coordinates so that the metric has the form

ds2 = gttdt
2 + grrdr

2 + r2dθ2 + r2 sin2 θdφ2 (4.2)

before we even try to solve the Einstein equation. Moreover, spherical symmetry and time-independence
would suggest that gtt and grr will depend on the radial component r alone.

Now, this is an educated guess about what might successfully solve the Einstein equation in this situation,
but it is still just a guess. If we find that this trial solution leads to a self-contradictory or trivial solution,
then we can go back and try a more complicated guess.

Using the Diagonal Metric Worksheet. Since we are solving for the gravitational field in the empty
space surrounding this object, the Einstein equation in this case (in its “easier-to-solve” form becomes
simply Rµν = 0, because the stress-energy of empty space is essentially zero (we are treating the vacuum
energy density as negligible here). So our next task is to evaluate the 10 independent components of the
Ricci tensor for a metric of the form given above. The Diagonal Metric Worksheet (which is available
online) lists all of the components of the Ricci tensor for a general diagonal metric of the form ds2 =
−A(dx0)2 +B(dx1)2 +C(dx2)2 +D(dx3)2, where dx0, dx1, dx2, dx3 are completely arbitrary coordinates and
A,B,C,D are arbitrary functions of any or all of the coordinates. The worksheet uses a shorthand notation
where

A0 ≡
∂A

∂x0
, B12 ≡

∂2B

∂x1∂x2
(4.3)

and so on. In our particular case, the coordinates x0 = t, x1 = r, x2 = θ, and x3 = φ, C = r2, D = r2 sin2 θ,
and A and B are unknown functions of r alone. Our metric does not depend on t or φ, so any term involving
a 0 or 3 subscript is zero. Also only D depends on θ, so any other terms involving a 2 subscript will be zero.

When I use the worksheet, I write above each term listed in the worksheet the equivalent term for the
case in question as well as crossing out each term that is clearly zero. I then assemble all terms at the
bottom. Figure 1 illustrates the process for calculating Rtt in this situation.

I will let you go through the process yourself as one of the homework problems. But when you do this,
you will find that

Rtt =
1

2B

[
d2A

dr2
− 1

2A

(
dA

dr

)2

− 1

2B

dA

dr

dB

dr
+

2

r

dA

dr

]
(4.4)

Rrr =
1

2A

[
−d

2A

dr2
+

1

2A

(
dA

dr

)2

+
1

2B

dA

dr

dB

dr
+

2A

Br

dB

dr

]
(4.5)

Rθθ = − r

2AB

dA

dr
+

r

2B2

dB

dr
+ 1− 1

B
, Rφφ = sin2 θRθθ (4.6)

and all of the off-diagonal components of Rµν are identically zero. The Einstein equation in empty space
requires that Rµν = 0. Assuming that A 6= 0 and B 6= 0, this means that

0 = 2BRtt + 2ARrr =
2

r

dA

dr
+

2A

Br

dB

dr
(4.7)

(all terms but the last in each Ricci component cancel). Where r 6= 0, this becomes simply

0 = B
dA

dr
+A

dB

dr
=

d

dr
(AB) ⇒ AB = constant (4.8)

Now, we would expect that as r → ∞, the gravitational field would become negligible, meaning that the
metric of spacetime should become flat spacetime, which implies that the metric should in this limit become
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Figure 1: Using the Diagonal Metric Worksheet to work out the value of Rtt for the Schwarzschild trial
metric.
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ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 (the metric for flat spacetime in a spherical coordinate basis). We
can enforce this by choosing the constant value of AB = 1, which is the value that AB must have at infinity
if the metric is to be the flat-space metric.

If we now substitute B = 1/A and equation 4.8 in the form

dB

dr
= −B

A

dA

dr
(4.9)

into equation 4.6, we can eliminate all references to B. With a bit of work, you can show that

0 = −r dA
dr

+ 1−A (4.10)

⇒ 1 = r
dA

dr
+A =

d

dr
(rA) ⇒ r = rA+K ⇒ A = 1− K

r
(4.11)

where K is a constant of integration. Since AB = 1, we also know that

B =
1

A
=

1

1−K/r
(4.12)

We saw in the second session that if we choose K = 2GM , then a particle at rest accelerates at the rate that
we would expect from Newtonian physics. With this identification, we have arrived at the Schwarzschild
metric

ds2 = −
(

1− 2GM

r

)
dt2 +

dr2

1− 2GM/r
+ r2dθ2 + r2 sin2 θdφ2 (4.13)

Since we seem to have a credible and self-consistent solution for the unknown terms in our trial metric, it
seems that we made a good initial guess. We also see that the Diagonal Metric Worksheet makes solving
the Einstein equation practical (imagine trying to work out all the Christoffel symbols and Ricci tensor
components from first principles!).

4.2.1 Exercise: Filling in the Missing Steps.

Fill in the missing steps required to get from equations 4.6 and 4.9 to equation 4.10. Here is equation 4.6
again, for easy reference:

Rθθ = − r

2AB

dA

dr
+

r

2B2

dB

dr
+ 1− 1

B
(4.14)

4.3 Interpreting the Schwarzschild Solution.

A theme that I am going to be repeating over and over is that coordinate names mean nothing: only the
metric gives any kind of meaning to coordinates. In this section, I am going to illustrate some of the issues
involved by discussing the meaning of the Schwarzschild coordinates as revealed by the metric equation.

We have already discussed the meaning of the r coordinate: it is a circumferential coordinate determined
by measuring the circumference of a circle and dividing by 2π. One should be careful not to think of this
coordinate as being a “radial” coordinate in the usual sense. For example, the radial distance between a
point at coordinate r0 and one at r1 is not r1 − r0 but rather (calculating the arclength along a line where
dt = dθ = dφ = 0

∆s =

∫
ds =

∫ r1

r0

dr

1− 2GM/r
=

[
r

√
1− 2GM

r
+ 2GM tanh−1

√
1− 2GM

r

]r1
r0

(4.15)

as long as r > 2GM . This begins to be approximately r1− r0 when r � 2GM , but in general, ∆s > r1− r0.
But we cannot even calculate this distance for r < 2GM (for reasons we will discuss shortly). So in spite of
its name, the Schwarzschild r coordinate is not a radial coordinate.

The Schwarzschild t coordinate is also not really a “time” coordinate. General clocks at rest in Schwarzschild
spacetime do not measure t. The metric tells us that a clock at rest (dr = dθ = dφ = 0) in fact registers a
proper time between events at its location of

∆τ =

∫ √
−ds2 =

∫ √
1− 2GM

r
dt =

(
1− 2GM

r

)
∆t (4.16)

as long as r > 2GM . So a clock at rest only measures t in the limit that r →∞.
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Light flashes must travel along worldlines such that ds2 = 0. The metric tells us that for a radial light
worldline (where dθ = dφ = 0), we will have

0 = −
(

1− 2GM

r

)
dt2 +

dr2

1− 2GM/R
⇒

(
dr

dt

)2

=

(
1− 2GM

r

)2

⇒ dr

dt
= ±

(
1− 2GM

r

)
(4.17)

as long as r ≥ 2GM . The main thing that I want you to notice right now is that this equation implies
that the coordinate t time required for a radially moving light flash to travel from one a given r-coordinate
displacement is the same whether the flash is traveling inward or outward. This might seem to be obvious
(as if it were required by physics), but this is actually a consequence of our definition of coordinates so that
(among other things) the metric itself is independent of t. We could have defined coordinates differently,
and we will in fact shortly see that our chosen definition of coordinates has certain problems.

But we now have enough of a picture of what the metric is saying to talk about how we could set up
a machine for assigning Schwarzschild coordinates to events. By examining how must thrust a spacecraft
needs to remain at rest, we can mark out locations in space that must have the same r-coordinate. Once we
have marked out these locations, imagine constructing a lattice of girders that comprises a spherical surface
around the object. We can lay out spherical coordinates θ, φ in the usual way on the surface of this sphere,
and we can label each lattice intersections with the value of its θ and φ coordinate. We can also label each
intersection with the (common) value of r that corresponds the value that we get when we measure the
largest circumference of the sphere and divide by 2π.

Similarly, we set up other concentric spherical lattices, labeling their girder intersections similarly until
we have a nice set going out to radii where 2GM/r is negligible. We lash all of these spheres together with
radial girders perpendicular to the spheres’ surfaces. Finally we arrange a set of strobe lights at various θ, φ
coordinates on the outer sphere (at r = “∞”) connected to synchronized clocks at that so that they flash
synchronously once every second (with an encoded message that specifies the clock time).

Finally, we set up a “t-meter” at every interior lattice intersection. The t-meter increments its value by
1 second every time it receives a flash from the strobe at infinity having its same angular position (so that
the light flash is radial). These t-meters are not real clocks: they will in fact tick faster by an r-dependent
amount than a real clock placed at the same intersection.

Finally, we need to synchronize all the t-meters. Since the radial light travel ∆t going in is the same as
going out from, a worker at each intersection can send a light flash out to its corresponding clock at “∞” and
receive a response reflected from it. The ∆t it takes a signal to get from the clock at “∞” to the t-meter in
question is half the difference between the arrival and departure t-values as registered by the local t-meter.
The worker then knows that the local t-value is ∆t larger than the time encoded in each flash, and so set
the t-meter accordingly.

Now, whenever an event occurs in the lattice, an observer can record the labels for r, θ, φ at the nearest
intersection and record the value displayed on the t-meter at that intersection at the time the event occurred.
This will allow us to assign coordinates to each event.

However, this all falls apart as we try to extend the lattice down past r = 2GM . We have already seen
that we cannot determine radial distances past this radius. A clock at rest at this radius registers no time,
so a worker at this location trying to set the t-meter will see all the flashes coming at once. Indeed a clock
or worker at rest at this location would have to be constructed out of photons, since being at rest at this
location corresponds to traveling along a light worldline.

Indeed, the metric for r < 2GM implies that gtt > 0 and grr < 0. In a diagonal metric, the negative
metric component indicates the time-like coordinate, so in spite of its name, the r coordinate is the time-
like coordinate and t is just another spatial component. But the metric says that r still describes the
circumferences of imaginary spherical surfaces at constant t and r, which therefore become smaller and
smaller as r becomes smaller. And for someone that falls in past the r = 2GM sphere, r must go inward
with the same inevitability as time goes forward for us, and r = 0 is this person’s future in a very literal
sense. Even light must move inward (toward the future) inside this radius.

The point is that we cannot extend our spherical lattice scheme to r = 2GM or inward. In fact, one can
show that the vertical force one would have to exert on an object (according to a local observer) to hold it
at rest goes to infinity as r → 2GM , so any girder that we try to lower to this radius would get torn apart.
We cannot set up t-meters at rest, and the light signals that we need to use to set up and synchronize those
t-meters end up going inward, not outward.
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Of course, 2GM for an object the mass of the sun is about 3 km. The surface of most physical objects
is well outside this radius, and the Schwarzschild solution (because it is a vacuum solution), does not apply
inside such an object. So all of this weird behavior does not even apply to most objects. But the metric tells
us that such problems will arise if an object’s mass were ever to be compressed inside its Schwarzschild
radius r = 2GM (so that the vacuum solution applies down to this radius), then the mass can never come
out, but rather must end up at the endpoint of its future, which is r = 0: the object becomes a black hole.

Others are going to talk to you more about black holes. My purpose here has been entirely to give you
practice in looking beyond the names of the coordinates to what the metric says those coordinates actually
mean. This will continue to be an issue for us as we move forward.

4.3.1 Exercise: Kruskal-Szekeres Coordinates.

The Kruskal-Szekeres coordinate system is an alternative solution to the empty-space Einstein equation in
the spherically symmetric case. The Kruskal-Szekeres metric is

ds2 = −32(GM)3

r
e−r/2GM (dv2 − du2) + r2dθ2 + r2 sin2 θdφ2 (4.18)

where r is not a coordinate here but is a shorthand for a function r(v, u) implicitly defined by( r

2GM
− 1
)
er/2GM = u2 − v2 (4.19)

Note that the components of this metric do not behave badly at r = 2GM (which corresponds to events
where u2 = v2).

(a) What is the time coordinate in this metric? Is it a time coordinate for all values of r?

(b) What kind of worldline does a particle at fixed r follow in u, v coordinates? Is r fixed if u is fixed? If
v is fixed?

(c) Argue that the value of the function r still corresponds to the circumference of an equatorial (θ = π/2)
circle divided by 2π but now evaluated for fixed u and v (instead of fixed r and t as in Schwarzschild
coordinates). Is r fixed if u and v are fixed?

4.4 The Weak-Field Approximation.

Another approach to solving the Einstein equation is to take what is known as the weak-field limit. “Weak”
fields in this context are actually not all that weak by astrophysical standards. One would actually need to
be close to a black hole or a neutron star for the weak-field approximation to break down. No gravitational
field in the solar system would even come close to violating this approximation. This is also the path to
understanding both the generation and detection of gravitational waves.

We describe a gravitational field as ”weak” in a region of spacetime if we can describe the spacetime
using almost-cartesian coordinates t, x, y, z whose metric is such that

gµν = ηµν + hµν where hµν = hνµ and |hµν | � 1 (4.20)

where ηµν is the flat-spacetime metric. Not that the “almost-cartesian” coordinates here are not the same
as true cartesian coordinates (for which the metric would be exactly ηµν).

Taking the “weak-field limit” means that we will drop terms of order |hµν |2 and higher in all the equations
that follow. To this level of approximation, the inverse metric gµν turns out to be

gµν = ηµν − hµν where hµν ≡ ηµαηνβhαβ (4.21)

To see this, note that

gµνgνσ = (ηµν − hµν)(ηνσ + hνσ) = ηµνηνσ − hµνηνσ + ηµνhνσ + hµνhνσ

= δµσ − ηνσ(ηµαηνβhαβ) + ηµνhνσ + (dropped)

= δµσ − ηµα(ησνη
νβ)hαβ) + ηµνhνσ

= δµσ − ηµαδβσhαβ + ηµνhνσ = δµσ −���
�ηµαhασ +���

�ηµνhνσ = δµσ

(4.22)

implying that the stated inverse does satisfy its definition equation to the order in question.
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This means that we can raise or lower the indices of any quantity that is of order of hµν using the
flat-space inverse metric ηµν or metric ηµν , respectively. For example

hµν ≡ gµαhαν ≈ (ηµα − hµα)hαν = ηµαhαν + (dropped) (4.23)

since the dropped term is of order |hαν |2. This will be very important to keep in mind in what follows.
In particular, note that Christoffel symbols in this limit become

Γαµν = 1
2g
ασ(∂µgνσ + ∂νgσµ − ∂σgµν) ≈ 1

2η
ασ(∂µhνσ + ∂νhσµ − ∂σhµν) (4.24)

because the ηµν matrix is a constant, and we can throw away the correction to the inverse metric because it
will only lead to terms of order |hαν |2. Similarly, the expression for the Riemann tensor in this limit is

Rαβµν = 1
2 (∂β∂µhαν + ∂α∂νhβµ − ∂α∂µhβν − ∂β∂νhαµ) (4.25)

The derivation in this case is essentially the same as the derivation we did last time for the Riemann tensor
in a LIF. At the origin of a LIF, the Christoffel symbols are exactly zero, so their products vanish, leaving
only terms involving their derivatives. Also the metric in a LIF is exactly ηµν , so we raise or lower indices
with that matrix. In the weak field limit, we throw away the products of the Christoffel symbols not because
they are zero but because they are of order |hµν |2. Also we raise and lower indices with ηµν not because the
metric is ηµν but because including the correction term will only lead to terms of order |hµν |2, Also only the
hµν part of gµν varies, so only hs appear in the derivatives. Since the math is basically the same, the indices
still obey the “inner togetherness is positive” mantra that we saw before.

The Einstein equation (in arbitrary coordinates, but with both indices lowered) says that

Rβν = 8πG(Tβν − 1
2gβνT ) where T ≡ gµνTµν (4.26)

Using the definition of the Ricci tensor and the expression for the Riemann tensor given above, we see that

Rβν ≡ gαµRαβµν ≈ 1
2η
αµ(∂β∂µhαν + ∂α∂νhβµ − ∂α∂µhβν − ∂β∂νhαµ) (4.27)

So this is what appears on the left side of the Einstein equation. Though this makes the differential equations
we have to solve linear, the result is still not very pretty.

Though it will not look at first like it is going to help, it actually does help to define the trace-reversed
metric perturbation

Hµν ≡ hµν − 1
2ηµνh where h ≡ ηαβhαβ (4.28)

This is called “trace-reversed” because

H ≡ ηµνHµν = ηµνhµν − ηµνηµνh = h− 1
2δ
µ
µh = h− 2h = −h (4.29)

This also means that
hµν = Hµν + 1

2η
µνh = Hµν − 1

2η
µνH (4.30)

If we substitute this into equation 4.27, we find that

Rβν ≈ 1
2 (∂β∂µη

αµ[Hαν − 1
2ηανH] + ∂α∂νη

αµ[Hβµ − 1
2ηβµH]− ηαµ∂α∂µhβν + ∂β∂νH)

= 1
2 (∂β∂µ[Hµ

ν −��
�1

2δ
µ
νH] + ∂α∂ν [Hα

β −��
�1

2δ
α
βH]− ∂µ∂µhβν +���

�∂β∂νH)

= 1
2 (∂β∂µ[ηνσH

µσ] + ∂α∂ν [ηβσH
ασ]−�2hβν) (4.31)

and the Einstein equation becomes

�2hβν − ηνσ∂β∂µHµσ − ηβσ∂α∂νHασ = −16πG(Tβν − 1
2ηβνT ) (4.32)

where �2 ≡ ηµν∂µ∂ν = −∂2/∂2t + ∇2. (Note that because this equation makes it clear that Tµν is of the
same order as hµν , there is no point distinguishing between gµν and ηµν on the right side.) Now, this might
not seem much of an improvement, but as we will see below, we can always find a coordinate transformation
that sets ∂µHµν = 0, and this sets both of the H-terms in the equation above to zero. So solving the Einstein
equation is (in this limit) solving the coupled pair of equations
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�2hβν = −16πG(T βν − 1
2η
βνT ) and 0 = ∂µH

µν = ∂µ(hµν − 1
2η
µνh) (4.33)

where I have raised the β, ν indices on both sides.
Now this is actually not so bad. We can compare this equation to the analogous time-dependent equation

for the electric potential, where (
− ∂2

∂t2
+∇2

)
φ = −ρc

ε0
= −4πkρc (4.34)

where ρc is the charge density and k = 1/4πε0 is the Coulomb constant (which is directly analogous to the

gravitational constant G). You may remember that in static situations, we can calculate the potential φ(t, ~R)

at position ~R is do divide the source into tiny volume elements, treat each volume element as a point particle
with charge q = ρcdV , use the formula for the potential for a point charge φ = kq/s (where s ≡ |~R − ~r |
is the distance between the field point at position ~R and the volume element’s position ~r), and then sum
over all volume elements. Such a potential will satisfy the time-independent version of equation 4.34. You
may also know that the solution to the time-dependent equation is the same thing except we account for the
light travel time that it takes to get from the source-element’s position ~r and the field point position ~R. By
analogy, then, the solution to the weak-field Einstein equation (equation 4.33) will be, quite generally,

hµν(t, ~R) = 4G

∫
src

T
µν

(t− s, ~r) dV
s

where T
µν ≡ Tµν − 1

2η
µνT (4.35)

subject to the condition that ∂µH
µν = ∂µ(hµν − 1

2η
µνh) = 0.

4.4.1 Exercise: A Static Spherical Star.

Consider a static spherical star with total mass M . Assume that pressure is negligible, so that its only
nonzero stress-energy component is T tt = ρ, where ρ is a function of radius alone.

(a) Show that T
µν ≡ Tµν − 1

2η
µνT has components T

tt
= T

xx
= T

yy
= T

zz
= 1

2ρ at every point.

(b) We know from electrostatics that the potential outside a spherical source is the same as that for particle
with same charge located at the source’s center. Using that analogy, find all components of hµν at a
point outside the star that is a distance r from the star’s center.

(c) What is Hµν for this solution? Show that ∂µH
µν = 0.

(d) What is gtt outside the star? Does this look familiar? (Don’t forget to lower the indices on hµν .)

4.5 Gravitomagnetism.

The electromagnetic analogy actually extends farther than one might imagine. Suppose we define a gravi-
toelectric potential ΦG and a gravitovector potential ~AG such that

ΦG ≡ − 1
8 (htt + hxx + hyy + hzz) and AiG ≡ − 1

4h
ti (4.36)

Here (and throughout this section) I will use an established convention that Latin letters range only over
spatial indices. Now, the time component of our coordinate condition ∂µH

µν = 0 tells us that

0 = ∂µ(hµt − 1
2η
µth) = ∂th

tt + ∂ih
it − 1

2 (−1)∂t(−htt + hxx + hyy + hzz)

= ∂ih
it + 1

2∂t(h
tt + hxx + hyy + hzz) = −4~∇ � ~AG − 4∂tΦG

⇒ ~∇ � ~AG = −∂ΦG
∂t

(4.37)

as is true for the analogous electromagnetic potentials in the Lorenz gauge. If we now define a gravitoelec-
tric field such that ~EG ≡ −~∇ΦG − ∂ ~AG/∂t, we find that

~∇ � ~EG = ~∇ �

(
−~∇ΦG −

∂ ~AG
∂t

)
= −∇2ΦG −

∂

∂t

(
~∇ � ~AG

)
= −�2ΦG

= + 1
8�

2(htt + hxx + hyy + hzz) (4.38)
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But by the weak-field Einstein equation, this is

~∇ � ~EG = −2πG(T tt + T xx + T yy + T zz + 1
2T −

1
2T −

1
2T −

1
2T )

= −2πG(T tt + T xx + T yy + T zz − [−T tt + T xx + T yy + T zz])

= −4πGT tt = −4πGρ (4.39)

If we define the gravitomagnetic field ~BG = ~∇× ~AG, then we have

~∇× ~BG = ~∇× ~∇× ~AG = ~∇(~∇ � ~AG)−∇2AG = ~∇
(
−∂ΦG

∂t

)
−∇2AG (4.40)

where I have used a well-known vector identity and the Lorenz condition (equation 4.37). If I now add and

subtract a ∂2 ~AG/∂t
2 term in the middle of this, we get

~∇× ~BG =
∂

∂t

(
~∇ΦG −

∂ ~AG
∂t

)
+
∂2 ~AG
∂t2

−∇2AG =
∂ ~EG
∂t
−�2 ~AG

=
∂ ~EG
∂t

+ 1
4�

2hti =
∂ ~EG
∂t
− 4πG(T ti − 1

2ηtiT ) =
∂ ~EG
∂t
− 4πG( ~J + 0) (4.41)

where J i ≡ T ti = energy flux in the i direction. You can easily use vector identities to derive the analogues
to Gauss’s law for the magnetic field and Faraday’s law. So in this weak-field limit, we have a complete set
of gravitomagnetic Maxwell’s equations:

~∇ � ~EG = −4πGρ (4.42)

~∇× ~BG −
∂ ~EG
∂t

= −4πG~J (4.43)

~∇ � ~BG = 0 (4.44)

~∇× ~EG +
∂ ~BG
∂t

= 0 (4.45)

Note the minus signs in the first two equations compared to the electromagnetic equations. The minus sign in
“Gauss’s law” is because the gravitational field created by a positive mass density is attractive, not repulsive.
The minus sign in the “Ampere-Maxwell law” implies that you should use a left-hand rule for predicting the
direction of ~BG created by a current where one would use a right-hand rule for a normal magnetic field ~B.

These equations apply very generally in the weak-field limit. However, they do not mean much unless
these fields are connected to the motion of particles in electromagnetic-like ways. Through a complicated
calculation, one can show that under the right conditions, the Newtonian acceleration ~a ≡ d2~x/dt2 of a
particle moving with velocity ~v in this weak field is

~a ≈ ~EG + ~v × 4 ~BG (4.46)

This equation (except for the factor of 4) looks a lot like the electromagnetic Lorentz force law! However,
the equation only applies when (1) the field is essentially static, (2) the fluid pressure in the field’s source
is negligible, (3) the bulk fluid velocity in the source is small enough that uiuj is negligibly small compared
to 1, and (4) the particle responding to the field is moving slowly enough that its v2 is negligible compared
to 1. If any of these constraints are violated, this gravitomagnetic force law gets more terms that do not
correspond to anything in electrodynamics.

Fortunately, however, these conditions apply in many circumstances of astrophysical interest. This is huge,
because it means that you can apply whatever you know about electromagnetic fields to gravitomagnetic
fields (as long as you remember the left-hand rule for sources of ~BG and the four-fold amplification of the

effect of ~BG). Even in cases where the conditions do not strictly apply, the electromagnetic analogy can help
you understand the qualitative consequences of being near spinning objects or significant energy fluxes.

In particular, note that a spinning object will create a gravitomagnetic field that causes a moving particle
to experience an acceleration component proportional to and perpendicular to its velocity. An object that
is initially falling radially toward a spinning star in its equatorial plane will be deflected by gravitomagnetic
effects in the direction of the star’s spin (an effect misleadingly called “frame-dragging”.) Spinning objects
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will precess in a gravitomagnetic field (an effect that was measured recently by Gravity Probe B.2) Spinning
stars in a close binary system undergo electromagnetic-like spin-spin and spin-orbit interactions that cause
the stars and the system’s orbital plane to precess in ways that modulate the gravitational waves emitted
by that system (something I and my research students are currently studying).

In short, this analogy is a powerful tool for developing one’s insight about how systems behave in general
relativity, even beyond the weak-field limit.

4.5.1 Exercise: Basic Gravitomagnetism.

(a) Use the gravitomagnetic analogy to argue that a particle falling initially radially in the equatorial plane
of a spinning object does indeed experience an acceleration component that deflects in the direction of
the object’s spin. (Don’t forget the left-hand rule!)

(b) Imagine a particle in a circular orbit in the equatorial plane of a spinning object. Suppose the particle
is orbiting in the same direction as the object is rotating. Will the period of the particle’s orbit be
affected by the object’s spin? If so, will it be longer or shorter than if the object were not spinning?

(c) Imagine an uncharged particle of dust is moving initially parallel to a relativistic stream of particles
(perhaps a jet from a quasar). Will gravitomagnetic effects repel or attract it to the stream? Are those
effects likely to be as large as the basic gravitoelectric attraction it experiences toward the stream?

4.6 Gauge Freedom.

We simplified the weak-field Einstein equation by requiring that that 0 = ∂µH
µν = ∂µ(hµν − 1

2η
µνh). What

gives us the freedom to do this?
We are working in “nearly cartesian” coordinates t, x, y, z for which gµν = ηµν + hµν and |hµν | � 1. The

latter restriction is actually not very restrictive: there are still infinitely many “nearly cartesian” coordinate
systems having different hµνs that still have |hµν | � 1. We can take advantage of this microscale coordinate
freedom to pick the particular coordinate systems that make solving the Einstein equation easier.

To see just how much freedom we have, consider making a small adjustment to a coordinate system that
is already “nearly cartesian:”

x′α = xα + ξα where ξα = ξα(t, x, y, z) and |ξα| � 1 (4.47)

Note that this means that the inverse transformation is xα = x′α− ξα. The transformation partials that we
need to transform the metric in this case are

∂xβ

∂x′α
=

∂

∂x′α
(
x′ β − ξβ

)
= δβα −

∂ξβ

∂x′α
= δβα −

∂xσ

∂x′α
∂ξβ

∂xσ

= δβα −
(
δσα −

∂ξσ

∂x′α

)
∂ξβ

∂xσ
≈ δβα − δσα

∂ξβ

∂xσ
= δβα − ∂αξβ (4.48)

where in the next-to-last step I have dropped a term of order |ξα|2 The tensor transformation law for the
metric tensor is then

g′µν =
∂xα

∂x′µ
∂xβ

∂x′ ν
gαβ = (δαµ − ∂µξα)(δβν − ∂νξβ)(ηαβ + hαβ)

≈ δαµδβν ηαβ − ∂µξαδβν ηαβ − δαµ∂νξβηαβ + δαµδ
β
ν hαβ = ηµν − ∂µξν − ∂νξµ + hµν (4.49)

where I have dropped terms of order |ξα|2 and also terms of order |ξα||hµν | as being negligible. We see
therefore that

h′µν = hµν − ∂µξν − ∂νξµ (4.50)

Now, suppose that we substitute this expression into the weak-field form of the Riemann tensor:

R′αβµν = 1
2 (∂′β∂

′
µh
′
αν + ∂′α∂

′
νh
′
βµ − ∂′α∂′µh′βν − ∂′β∂′νh′αµ)

= 1
2 (∂β∂µh

′
αν + ∂α∂νh

′
βµ − ∂α∂µh′βν − ∂β∂νh′αµ)

= 1
2 (∂β∂µhαν − ∂β∂µ∂αξν − ∂β∂µ∂αξν + ∂α∂νhβµ − ∂α∂ν∂βξµ − ∂α∂ν∂µξβ
− ∂α∂µhβν + ∂α∂µ∂βξν + ∂α∂µ∂νξβ − ∂β∂νhαµ + ∂β∂ν∂αξµ + ∂β∂ν∂µξα)

= 1
2 (∂β∂µhαν + ∂α∂νhβµ − ∂α∂µhβν − ∂β∂νhαµ) = Rαβµν (4.51)
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In going to the second line, I have dropped the primes on the partial derivatives because the difference
between the two derivatives is of order |ξα|, each derivative acts on a metric perturbation hµν and we are
dropping terms of order |ξα||hµν |. In going to the third line, I have used equation 4.50. In going to the
last line, I have noted that all of the terms involving ξ cancel in pairs: for each of the four subscript names
α, β, µ, ν that ξ can have, we have two terms that cancel.

The point is that such a coordinate transformation does not change the value of any component of the
Riemann tensor (to our order of approximation), which means that if our original coordinate system was a
solution to the Einstein equation, then the new coordinate system will be as well. So, given any solution to
the weak-field Einstein equation, we can generate an infinite family of solutions by using different (small but
otherwise arbitrary transformations of the type x′α = xα + ξα where |ξα| � 1.

At the deepest level, we see that this indeterminacy in the solution to the weak-field Einstein equation
reflects our complete freedom to choose spacetime coordinates. But in the weak-field limit, we can pretend
that hµν is not a perturbation in the metric but rather a tensor field that exists in a flat spacetime, in the
same way that the electromagnetic four-potential Aµ is genuinely a tensor that exists in spacetime. We
can then look at our freedom choose between equally valid solutions hµν as being analogous to the freedom
we have in choosing valid electromagnetic potentials. You probably already know that if we transform the
electromagnetic potentials by

~A′ = ~A+ ~∇λ and φ′ = φ− ∂λ

∂t
(4.52)

for any arbitrary scalar function λ(t, x, y, z), we do not affect the physical electromagnetic fields ~E and ~B,
and that we call such transformations gauge transformations (for obscure historical reasons). Equation
4.50 represents completely analogous transformations of our metric perturbation hµν , so because physicists
are a lazy bunch, we still call them gauge transformations and any specific “nearly cartesian” coordinate
choice for expressing hµν a gauge.

Just as the Lorenz gauge condition ~∇ � ~A = −∂φ/∂t (which is equivalent to ∂µA
µ = 0) simplifies the

electromagnetic equations for the potentials, so our similar choice

0 = ∂µH
µν = ∂µ(hµν − 1

2η
µνh) (4.53)

(which we also call the “Lorenz gauge condition” for the metric perturbation) greatly simplifies the Einstein
equation. (By the way, this is “Lorenz,” after the Danish physicist L. V. Lorenz, not “Lorentz” after the
Dutch physicist H. A. Lorentz, whose name is attached to the Lorentz transformation. Particularly in the
context of relativity, it is easy to confuse the two.) Now it is time to see that we can always make this choice.

Note that the transformation law for h is

h′ = ηµνh′µν = ηµνhµν − ηµν∂µξν − ηµν∂νξµ = h− 2ηµν∂νξµ (4.54)

So the transformation law for Hµν must be

H ′µν = h′µν − 1
2ηµνh

′ = hµν − ∂µξν − ∂νξµ − 1
2ηµν(h− 2ηαβ∂αξβ)

= Hµν − ∂µξν − ∂νξµ + ηµνη
αβ∂αξβ (4.55)

Now, what we would like is to find what function ξα will take us from an arbitrary Hµν to one satisfying
∂ ′µH

′µν = ∂µH
′µν = 0. Raising indices in the equation above, acting on both sides with ∂µ, and setting the

left side equal to zero implies that

0 = ∂µH
′µν = ∂µH

µν − ∂µ∂µξν −����∂µ∂
νξµ +���

�∂ν∂αξ
α (4.56)

We can do this by setting our transformation functions ξν to be solutions of the equation �2ξν = ∂µH
µν . This

is a simple set of four differential equations in ξν . Mathematicians have thoroughly studied the differential
operator �2 = −∂2/∂t2 −∇2, and have show that solutions to equations of the form �2f = g always exist
for well-defined driving functions g.

Indeed solutions f to the inhomogeneous differential equation �2f = g actually represent families of
solutions because if any given function f solves the equation, then so does f + bf0, where f0 is a solution to
the homogeneous equation �2f0 = 0. The point is that given a solution Hµν that satisfies the Lorenz gauge
condition, we can make further transformations ξν satisfying �2ξν = 0 without changing ∂µH

µν (and thus
keeping the Lorenz condition intact). Choosing Lorenz gauge therefore does not exhaust our gauge freedom.
We will find this very helpful when dealing with gravitational waves.
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So, since we always can find a coordinate transformation that converts a solution hµν of the Einstein
equation into one that satisfies the Lorenz condition ∂µH

µν = 0 after we have found the solution, we can
confidently require that we are looking for such solution at the same time we solve the Einstein equation.

Finally, I want to show you a revised version of the weak-field Einstein equation that is also useful.
Suppose that we take equation 4.33 and contract over its free indices:

�2ηµνh
µν = −16πG(ηµνT

µν − 1
2ηµνη

µνT ) = −16πG(T − 2T )

⇒ �2h = +16πGT (4.57)

were I used ηµνηµν = δµµ = 4. If we now subtract half of this from both sides if equation 4.33, we see that

�2Hµν = �2(hµν − 1
2η
µνh) = −16πG(Tµν −

��
��1

2η
µνT )−(((((16πGηµνT = −16πGTµν (4.58)

Solving this simpler equation for Hµν (subject to the Lorenz condition ∂µH
µν = 0) therefore keeps us focused

on one set of functions Hµν and also allows us to use the straight stress-energy tensor on the right side. Once
we have our solution for Hµν , then we can convert back to the real metric perturbation hµν by lowering
indices and then using hµν = Hµν − 1

2ηµνH. This will make our life simpler when we handle sources of
gravitational waves.

4.6.1 Exercise: Is the Coordinate Transformation Small?

We found that we could enforce the Lorenz gauge condition to be true by finding transformation functions
ξν that solve �2ξν = ∂µH

µν . But to be a valid gauge transformation, we also must have ξν � 1, so that the
transformed versions of hµν don’t violate the basic weak-field limit |hµν | � 1. Why might we expect that
solutions to �2ξν = ∂µH

µν would also satisfy this condition?
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Homework Problems

4.1 Use the Diagonal Metric Worksheet to verify the values of Rrr, Rθθ, and Rφφ stated above, and also
check that off-diagonal Ricci components are all zero.

4.2 An object’s four-acceleration is a ≡ du/dτ . As we saw in the last session a = 0 for an object following
a geodesic. Consider an object at rest at a Schwarzschild coordinate r. Such an object is not following
a geodesic: one would have to exert an upward radial force (perhaps with a rocket engine) to hold it
in place. The Schwarzschild components of the four-acceleration are

aµ =

(
du

dτ

)µ
=
duµ

dτ
+ Γµαβu

αuβ (4.59)

We have also seen that for an object at rest in Schwarzschild spacetime, we have ut = (1−2GM/r)−1/2

and ur = uθ = uφ = 0, and that Γ rtt = −2GM/r2 and other Γµtt = 0. Calculate the acceleration’s
coordinate-independent magnitude (a � a)1/2. Show that this goes to infinity as r → 2GM . (This times
the object’s mass m will be the force required to hold the object in place.)

4.3 Consider the weak field solution for a spherical star that we developed during the session.

(a) Show that the spatial part of the metric in this solution is ds2 = (1 + 2GM/r)(dx2 + dy2 + dz2).

(b) Consider the coordinate transformations x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ (the same
transformations that we would use to go from spherical to cartesian coordinates in flat-spacetime).
Take the differentials of these expressions and substitute them into the above to show that in r, θ, φ
coordinates, the spatial part of the metric is ds2 = (1 + 2GM/r)(dr2 + r2dθ2 + r2 sin2 θdφ2).

(c) Note that r here is not a circumferential coordinate since the circumference of the equator is
2π(1 + 2GM/r)1/2r. So define a truly circumferential coordinate rc ≡ (1 + 2GM/r)1/2r. Show
that dr = drc if we ignore terms of order 2GM/r (= htt in this case).

(d) Show then that the spatial part of the metric becomes ds2 = (1+2GM/r)dr2c+r2cdθ
2+r2c sin2 θdφ2.

(e) Show that this is equivalent to ds2 = (1 + 2GM/rc)dr
2
c + r2cdθ

2 + r2c sin2 θdφ2 if we drop terms
that are second order in 2GM/r = htt.

(f) Use the binomial approximation to show that the last metric is equivalent to the spatial Schwarzschild
metric to the same order.

4.4 Show that the basic vector identities ~∇ � (~∇× ~F ) = 0 and ~∇× ~∇f = 0 (where ~F and f are arbitrary

vector and scalar fields, respectively) and the definitions of ~EG and ~BG imply Gauss’s law for ~BG and

Faraday’s law for ~EG and ~BG.

4.5 We can get a first step of insight into how one might derive ~a = ~EG + ~v × 4 ~BG (equation 4.46) as
follows. Start with the geodesic equation

d2xi

dτ2
= −Γ iµνuµuν (4.60)

Assume that the particle is moving so slowly that τ ≈ t, which basically means that we are ignoring
terms of order v2 in the particle’s speed v. This will also mean that ut ≈ 1 and ui ≈ vi. (Technically,
ut also differs from 1 by terms of order hµν , but since the Christoffel symbol is already of that order,
neglecting those terms in ut will only yield negligible errors of order |hµν |2). Let’s assume that the
particle is moving purely in the x-direction. The geodesic equation then becomes

d2xi

dτ2
= −Γ itt − Γ itxvx (4.61)

Ignore first term on the right: that will become ~EG, but the argument is a bit subtle. Focus instead
on the velocity-dependent part. Assume that the fields are static, so that all time derivatives of hµν
are zero. Use the definition of the Christoffel symbol and the definitions of ~AG and ~BG to show that
this part of the acceleration has components equal to the components of ~v × 4 ~BG.
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4.6 Suppose that in a certain region of spacetime, we have Hµν = 0 except for Htt = Br2 + C, where B
and C are constants (B has units of m−2) and r2 ≡ x2 + y2 + z2.

(a) Show that Hµν satisfies the Lorenz condition.

(b) Use equation 4.58 to argue that this could be a solution to the weak-field Einstein equation inside
a spherical star centered on the origin whose fluid has a uniform and constant energy density
ρ, negligible pressure, and has zero bulk velocity. Also determine how the constant B must be
related to ρ.

(c) Define m(r) = 4
3πr

3ρ = the Newtonian mass-energy enclosed by the radius r. Calculate all of the
metric components of gµν as a function of r in terms of m(r) and C.

(d) At the star’s surface r = R, the solution must match the exterior solution that we developed
during the session (note that m(R) = M . Use this to determine the value of C and right out the
final metric equation for the star’s interior in these coordinates.

(e) Sketch or plot a graph of htt (in terms of GM/R) as a function of r from r = 0 to r = 4R.

(f) What condition must be satisfied if all points inside such a star are to satisfy the weak-field
condition that |hµν | � 1? Is this plausible for normal matter?

Notes
1Folsing, Albert Einstein, (trans. Osers), Penguin 1997, pp. 384-385.
2Everitt, et al. (2011). ”Gravity Probe B: Final Results of a Space Experiment to Test General Relativity”. Physical Review

Letters, 106 (22): 221101.
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