
General Relativity and Gravitational Waves

Session 5: Gravitational Waves

5.1 Overview of this Session

In the last session, we began exploring the weak-field approximation to general relativity and our gauge
freedom in choosing the solutions to the weak-field Einstein equation. In this final session we will explore
solutions to the weak-field Einstein equation that describe gravitational waves and how they are generated.

An overview of this session’s sections follows:

5.2 Transverse-Traceless Gauge. Not all wavelike solutions of the weak-field Einstein equation are
actual waves. This section discusses how we can discover which waves are real and which are “fake,”
and how going to the so-called “transverse-traceless” gauge focuses our attention on the real physical
of gravitational waves and how they affect matter.

5.3 Generating Gravitational Waves. In this section, we will see that for small, weak, and slow sources,
we can link the gravitational waves generated to the double time derivative of the source’s reduced
quadrupole moment tensor.

5.4 Gravitational Wave Energy. This section explores the tricky issue of how we can determine the
“energy” that a gravitational wave carries.

5.5 Source Luminosities. In order to calculate the gravitational-wave luminosity of sources, we need to
be able to determine the transverse-traceless components of the metric perturbation for waves moving
in arbitrary directions. This section devises such a method and develops a formula for a source’s
luminosity.

5.6 Gravitational Waves from Binary Stars. This section talks about how we can specifically calculate
the gravitational radiation from binary star systems (including black-hole binaries), which are the main
(known) astrophysical source of detectable gravitational waves. This will include discussion of the
proposed LISA detector and post-newtonian approximations for gravitational waves from such sources.

5.2 The Transverse-Traceless Gauge.

We begin where we left off last time. We seek to solve the weak-field Einstein equation in nearly cartesian
coordinates, where it has the form

�2Hµν = −16πGTµν where Hµν ≡ hµν − 1
2η
µνh and gµν ≡ ηµν + hµν with |hµν | � 1 (5.1)

subject to the Lorenz gauge condition
∂µH

µν = 0 (5.2)

that restricts our choice of coordinates. But recall also that we have some remaining freedom to choose
coordinates: we can apply coordinate transformations of the form

x′α = xα + ξα where |ξα| � 1 and �2ξα = 0 (5.3)

Under such a coordinate transformation, we found that

H ′µν = Hµν − ∂µξν − ∂µξν + ηµν∂αξ
α (5.4)

Now, in empty space, the weak-field Einstein equation has the form �2Hµν = 0. Since �2f = 0 for
any function f is the wave equation, we can immediately see that we are going to have gravitational wave
solutions. Let’s attempt a plane-wave solution of the form

Hµν = Aµν cos kσx
σ = Aµν cos(~k � ~r − ωt) (5.5)

where Aµν is a constant matrix and kσ is a constant covector with components kt = −ω, kx, ky, kz. Such a

wave is a plane wave whose crests are perpendicular to the ~k direction and which move in the +~k direction
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with phase speed v = ω/k. The Einstein equation, the Lorenz gauge condition, and the symmetry of Hµν

(which follows from the symmetry of hµν) imply that

Einstein equation: ⇒ kαkα = 0 (5.6)

Lorenz gauge: ⇒ kµA
µν = 0 (5.7)

Symmetry: ⇒ Aµν = Aνµ (5.8)

The first equation implies that the wave moves with phase speed v = 1:

0 = kαkα = ηαβkαkβ = ηtt(−ω)2 + ηxx(kx)2 + ηyy(ky)2 + ηzz(kz)
2

⇒ 0 = −ω2 + k2 ⇒ ω = k ⇒ v =
ω

k
= 1 (5.9)

Indeed, the fact that we must have ω = k means that the waves’ group velocityvg = dω/dk = 1 as well. So
we see that (like electromagnetic waves) gravitational waves in a vacuum are dispersionless and move with
the maximum speed allowed by special relativity.

However, just because we have a plane wave solution to the weak-field Einstein equation in empty space
does not necessarily mean that we have an actual gravitational wave. In this case, a wavy metric perturbation
may describe a physical wavelike distortion of spacetime, but it may just as easily describe a wavy coordinate
system on top of a flat spacetime. How can we tell which is which?

There are several ways to do this. One common method is to use our additional gauge freedom (coordinate
transformations that satisfy �2ξα = 0) to set as many components of Aµν to zero as possible: the remaining
components (which we cannot transform away via an allowable coordinate transformation) will then plausibly
reflect a wave that is physical. But this method has always left me a bit uncomfortable. Are we absolutely
certain that the remaining components represent a physical wave, or just a wavy coordinate system that we
cannot erase for some reason with our choice of gauge conditions?

So I am going to present a different method, which has some advantages both in the simplicity of the
math and the clarity of its implications (and leave the other approach to a problem). The one true way to tell
whether you have a physical gravitational wave or just a wavy coordinate system is to look at the Riemann
tensor. According to a chart that we constructed a few days ago, we have 21 potentially independent Riemann
tensor components (updated for our particular coordinate system):

µν → tx ty tz xy xz yz
αβ ↓ tx Rtxtx Rtxty Rtxtz Rtxxy Rtxxz Rtxyz

ty Rtyty Rtytz Rtyxy Rtyxz Rtyyz
tz Rtztz Rtzxy Rtzxz Rtzyz
xy Rxyxy Rxyxz Rxyyz
xz Rxzxz Rxzyz
yz Ryzyz

(5.10)

subject to the additional constraint that 0 = Rtxyz+Rtzxy+Rtyzx, to leave 20 truly independent components.
Now, to make the math easier, let’s assume that our plane wave is moving purely in the z direction so that
kt = −ω, kx = 0, ky = 0, kz = ω (kt = −kz ensures that the condition kαkα = 0 is satisfied). The Lorenz
condition in this case requires that 0 = kµA

µν = −ωAtν + ωAzν , implying that

Att = Azt (= Atz) (5.11)

Atx = Azx (= Axt = Axz) (5.12)

Aty = Azy (= Ayt = Ayz) (5.13)

Atz = Azz (= Azt = Att from above) (5.14)

where the equalities in parentheses follow from the symmetry of Aµν . Also note that

∂β∂µhαν = ∂β∂µ(Hαν − 1
2ηανH) = kβkµ(Aαν − 1

2ηανA) sin kσx
σ (5.15)

where A ≡ ηµνA
µν = −Att + Axx + Ayy + Azz = Axx + Ayy because the Lorenz condition requires that

Att = Azz (see equations 5.11 and 5.14). Finally, note that

Aαν = ηαβηνµA
βµ =

{
−Aαν if either α = t or ν = t but not both

+Aαν otherwise
(5.16)
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We are now ready to evaluate components of the Riemann tensor, which in this weak-field limit is

Rαβµν = 1
2 (∂β∂µhαν + ∂α∂νhβµ − ∂α∂µhβν − ∂β∂νhαµ)

= − 1
2 (kβkµ[Aαν − 1

2ηανA] + kαkν [Aβµ − 1
2ηβµA]

− kαkµ[Aβν − 1
2ηβνA]− kβkν [Aαµ − 1

2ηαµA]) sin kσx
σ (5.17)

Now let’s start calculating components of this tensor. For example:

Rtxtx = − 1
2 (kxkt[Axt − 1

2ηxtA] + ktkx[Atx − 1
2ηtxA]

− ktkt[Axx − 1
2ηxxA]− kxkx[Att − 1

2ηttA]) sin kσx
σ

= − 1
2 (0 + 0− ω2[Axx − 1

2 (Axx +Ayy)]− 0) sin kσx
σ

= + 1
4ω

2(Axx −Ayy) sin kσx
σ (5.18)

This term will be nonzero (indicating a physically curved spacetime, and thus a real gravitational wave) if
and only if Axx −Ayy is nonzero. Now let’s look at

Rtxty = − 1
2 (kxkt[Aty − 1

2ηtyA] + ktky[Axt − 1
2ηxtA]

− ktkt[Axy − 1
2ηxyA]− kxky[Att − 1

2ηttA]) sin kσx
σ

= − 1
2 (0 + 0− ω2Axy − 0) sin kσx

σ = + 1
2ω

2Axy sin kσx
σ (5.19)

So this term will be nonzero if and only if Axy is nonzero. Similarly,

Rtxtz = − 1
2 (kxkt[Atz − 1

2ηtzA] + ktkz[Axt − 1
2ηxtA]

− ktkt[Axz − 1
2ηxzA]− kxkz[Att − 1

2ηttA]) sin kσx
σ

= − 1
2 (0− ω2Axt − ω2Axz − 0) sin kσx

σ

= + 1
2ω

2(Axt +Axz) sin kσx
σ = 0 (5.20)

because the Lorenz condition requires that Axt = Axz, so Axt = −Axz, meaning that this term is identically
zero, no matter what Axt is. Similarly, Rtytz = 0 no matter what Ayt is. Now let’s look at

Rtxxy = − 1
2 (kxkx[Aty − 1

2ηtyA] + ktky[Axx − 1
2ηxxA]

− ktkx[Axy − 1
2ηxyA]− kxky[Atx − 1

2ηtxA]) sin kσx
σ

= − 1
2 (0 + 0− 0− 0) sin kσx

σ = 0 (5.21)

This one is identically zero because we need at least two t and/or z indices for at least one pair of k’s to be
nonzero. The same reasoning also eliminates Rtyxy, Rxyxy, Rxyxz, and Rxyyz. Finally, consider

Rtxyz = − 1
2 (kxky[Atz − 1

2ηtzA] + ktkz[Axy − 1
2ηxyA]

− ktky[Axz − 1
2ηxzA]− kxkz[Aty − 1

2ηtyA]) sin kσx
σ

= − 1
2 (0− ω2Axy − 0− 0) sin kσx

σ = 1
2ω

2Axy sin kσx
σ (5.22)

which again tells us that the gravitational wave is real when Axy 6= 0.
In a similar way, you can easily analyze the remaining terms yourself. Here is a complete list of the 21

Riemann tensor terms:

µν → tx ty tz xy xz yz
αβ ↓ tx Rtxtx = a Rtxty = b Rtxtz = 0 Rtxxy = 0 Rtxxz = a Rtxyz = b

ty Rtyty = −a Rtytz = 0 Rtyxy = 0 Rtyxz = b Rtyyz = a
tz Rtztz = 0 Rtzxy = 0 Rtzxz = 0 Rtzyz = 0
xy Rxyxy = 0 Rxyxz = 0 Rxyyz = 0
xz Rxzxz = a Rxzyz = b
yz Ryzyz = −a

(5.23)

where a ≡ 1
4ω

2(Axx−Ayy) sin kσx
σ and b ≡ 1

2ω
2Axy sin kσx

σ. You can also see that the symmetry condition
0 = Rtxyz +Rtzxy +Rtyzx imposes no additional constraints.
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The point of this is that for a wave moving in the z direction, the only parts of Aµν that actually matter
physically are two values: the value of Axx −Ayy and the value of Axy = Ayx. All of the other components
have no physical consequences, meaning that we should be able to find a coordinate transformation that sets
them to zero. Also, since only the difference between Axx and Ayy matters, we should be able to go to a
coordinate system where we subtract the remaining trace A = Axx+Ayy of the metric from each component:

Axxnew = Axx − 1
2A = Axx − 1

2 (Axx +Ayy) = 1
2 (Axx −Ayy) (5.24a)

Ayynew = Ayy − 1
2A = Ayy − 1

2 (Axx +Ayy) = − 1
2 (Axx −Ayy) (5.24b)

This will make the A-matrix traceless (Anew = 0) without affecting the difference between these components:
Axxnew −Ayynew = 1

2 (Axx −Ayy) + 1
2 (Axx −Ayy) = Axx −Ayy. We call the gauge where waves traveling in the

+z direction have the metric perturbation

Hµν
TT =

A+


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

+A×


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 cos kσx

σ (5.25)

the transverse traceless gauge for that wave (because the only nonzero spatial components are transverse
to the wave’s direction of motion and the matrix also has zero trace). We see that the general physically
relevant wave is a linear combination (with small but otherwise arbitrary values of the coefficents A+ and
A×) of two independent types of waves, which we call polarizations of the gravitational wave (in analogy
to the two linear polarizations of electromagentic waves). We call these polarization states “upright” and
“diagonal,” or “plus” and “cross” (for reasons that will become clear shortly).

Note also that in transverse-traceless gauge, there is no distinction between Hµν and hµν :

hµνTT = Hµν
TT −

1
2η
µνHTT = Hµν

TT (5.26)

This is one of the reasons it is convenient to set the trace to zero.
To determine the physical effects of the wave, consider a particle at rest (ux = uy = uz = 0). The

geodesic equation becomes

d2xα

dτ2
= −Γαµνuµuν = −Γαttutut = − 1

2η
αβ(∂th

TT
tβ + ∂th

TT
βt − ∂βhTTtt )utut = 0 ! (5.27)

because the metric perturbation in transverse-traceless gauge has no nonzero components with a t in one or
more index. This looks like it says that the wave has no physical effect on the particle after all! But this is
not what the equation is really saying. Just because the coordinates have the names t, x, y, z does not make
them cartesian coordinates. What the equation is actually saying is that in this case, the coordinates are
simply comoving with a free particle so that the coordinates of that particle remain fixed.

To see that this does not imply that the wave has no effect, we need (as always!) to go back to the metric
to see what our physical coordinates actually mean. Rather than one particle, consider a set of particles in
the xy plane that (before the wave comes by) are arranged in a ring of radius R that a purely “uprightly”
or “plus” polarized gravitational plane wave (A× = 0) moves in the +z direction through this ring. The
displacements ∆x = R cos θ and ∆y = R sin θ will be fixed in the transverse-traceless gauge, as we have seen.
But their distances ∆s from the center at a given instant of time t (∆t = 0 from the center) on the xy plane
(∆z = 0) are not fixed: according to the metric equation, we have

∆s2 = (ηxx + hTTxx )∆x2 + (ηyy + hTTyy )∆x2

= (1 +A+)R2 cos2 θ cos2 ωt+ (1−A+)R2 sin2 θ cos2 ωt

= R2[1 +A+(cos2 θ − sin2 θ)] cos2 ωt = R2(1 +A+ cos 2θ) cos2 ωt

⇒ ∆s = R(1 +A+ cos 2θ)1/2 cosωt ≈ R(1 + 1
2A+ cos 2θ) cosωt (5.28)

where in the last step I have used the binomial approximation, since A+ � 1. Similarly, you can show that
for a “diagonally” or “cross” polarized wave, we have

∆s ≈ R(1 + 1
2A× sin 2θ) cosωt (5.29)
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Figure 1: This diagram shows how a gravitational wave moving in the +z direction deforms a ring of free
particles floating in space. The X and Y coordinates here are coordinates of a LIF, where coordinate
displacements are the same as distance displacements.

We see that the distance that each particle is from the center oscillates as the wave passes and is proportional
to the displacement R that the particle is from the center when no wave is present. The wave deforms the
ring as shown in figure 1.

The deformation for the “upright” or “plus” polarization has the long axis of the ellipse oscillating between
the X and Y axes (in LIF coordinates that correspond to the actual distances), while that for the “diagonal”
or “cross” polarization is the same except rotated 45◦. You can now see why the subscripts on A+ and A×
make sense. This is also why the international symbol for dangerous gravitational radiation is as shown in
figure 2. (OK, sorry, that is a geeky joke.)

“Dangerous gravitational radiation” is actually practically a contradiction in terms. We will see that a
wide variety of astrophysical sources produce gravitational waves with amplitudes A+ and/or A× on the
order of 10−18 or smaller at the earth. This means that free particles separated by R ≈ 1× 106 m = 1000 km
would oscillate back and forth with amplitudes on the order of magnitude of 10−12 m (about a hundredth of
the size of an atom) even for waves with the largest likely amplitudes. The implication is that gravitational
waves from astrophysical sources are extremely hard to even detect, much less harm someone.

But humans have in fact detected gravitational waves, as you know! The basic design of almost any de-
tector involves a set of floating masses which have been extraordinarily well-isolated from their surroundings,
and some kind of laser-ranging system that accurately measures the physical distance between the floating
objects using interferometry. (One might think that this would be impossible with visible-light lasers, since
the displacement of each mass when the wave comes by will be such a tiny fraction of the wavelength of
light. But if the laser light is bright enough, one can detect a shift in the interference pattern from complete
destructive interference to just less than complete destructive interference, even if the shift is only a tiny
fraction of the wavelength of light.
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RADIATION

Figure 2: International warning symbol for dangerous gravitational radiation.

My personal research has to do with LISA, a space-based gravitational wave detector that will be flown
by the ESA, probably in about 2034. The floating masses in LISA’s case would be “proof masses” isolated
in the centers of three satellites arranged in an equilateral triangle about 5 million km on a side. The array
would orbit the sun about 20◦ behind the Earth in its orbit. The recent LISA Pathfinder mission tested the
basic technology, which performed even better than expected.

In spite of the fact that LISA’s arms are much longer than those of the ground-based detectors LIGO
and VIRGO, the sensitivity would be about the same, because the interferometer must be much more robust
(there is no ability to tinker with it once it is launched!) and also the power available to the lasers would be
much smaller (particularly considering the distances involved). The advantage of a space-based detector is
that the floating masses will be isolated from seismic noise, which is the main limit on LIGO’s noise curve
at low frequencies. While LIGO is sensitive to waves in an essentially audio frequency range of about 10
Hz to 1000 Hz, LISA will be sensitive to waves in the 10−4 Hz to 10−2 Hz (periods of hours to minutes).
There are many such sources of gravitational waves in that frequency range, from close binaries in our own
galaxy to coalescing supermassive black holes (which would be bright enough to be registered anywhere in
the universe). Indeed the limit on LISA’s noise curve at the low-frequency end is that there are so many
binary star systems in our galaxy with periods of hours or longer that isolated sources will be lost in the
“crowd noise.”

5.2.1 Exercise: Other Riemann Components

Calculate one or more of the Riemann tensor components in equations 5.23 to verify the results quoted there.

5.2.2 Exercise: Cross Polarization

Verify equation 5.29 for the deformation of a ring of particles due to a cross-polarized wave. (You will need
a double-angle trig identity that you can easily look up online.)

5.3 Generating Gravitational Waves

One can very crudely estimate the maximum strength of gravitational waves generated by an astrophysical
source as follows. At the source (say, for example, a pair of coalescing black holes), the metric perturbations
right at the source will be at most of order of magnitude 1 (note that gtt = −(1 − 2GM/r) = −1 + 1 at
r = 2GM , which is the radius of a black hole’s event horizon). The coalescing black holes that LIGO detected
in 2015 had a total mass of about 60 solar masses, for a total GM ≈ 105m. Since gravitational waves, like
light waves, fall off in amplitude as 1/r, such waves would have the observed amplitude of A ≈ 10−21 at a
distance of about 1026 m ≈ 1010 ly. Since the actual estimate of that source’s distance was 1.3 Gy, our crude
estimate is actually not bad at all.

This means that if our sun were to become a black hole and coalesce with another solar-mass black hole,
for a total GM ≈ 3000 m, the gravitational waves at the earth at a distance of r ≈ 1.5× 1011 m would have
an amplitude on the order of magnitude of 1/(1.5× 1011/3000) ≈ 2× 10−8. While this would probably blow
LIGO’s gaskets, I don’t think that you would even feel your body want to stretch and shrink by about 200
atom-widths.

Significantly more accurate guesses about the gravitational waves produced by coalescing black holes
require detailed computer models, and predicting how often such events occur is also very difficult. However,
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simple binary star systems are known and steady sources of gravitational waves, and one can make realistic
analytical calculations for the waves emitted by such sources. In what follows, I will describe how to calculate
the gravitational waves emitted by a system with two or more moving parts using the small-slow-weak
approximation, where we assume that

1. The source is small compared to both the wave’s wavelength and the distance to the observer.

2. The source is weak in that |hµν | � 1 even very near the source. (This will be reasonable for most
astrophysical sources of gravitational waves except for coalescing black holes or neutron stars.)

3. The source is slow in that parts of the source move with speeds v � 1. (This again will be true for
most astrophysical sources other than coalescing black holes or neutron stars.)

Let’s see how these approximations can help. The weak-field limitation allows us to us the weak-field
Einstein equation even to describe the source. We seek to solve

�2Hµν = −16πGTµν subject to the Lorenz condition ∂µH
µν = 0 (5.30)

We saw in the last session that solutions to this equation are (by analogy to solutions of the corresponding
electrostatic equation �2φ = −4πkρ) are

Hµν(t, ~R) = 4G

∫
src

Tµν(t− s, ~r ) dV

s
where s ≡ |~R− ~r | (5.31)

and the integral is a volume integral over positions ~r in the source. Now, if the source is also small compared
to R ≡ |~R|, then s ≈ R. If the source is also small compared to a wavelength of the wave, then the retarded
time t− s ≈ t−R for all points on the source. In this case, the solution becomes the simpler function

Hµν(t, ~R) =

[
4G

R

∫
src

Tµν dV

]
at t−R

(5.32)

From now on, let’s assume that all integrals over the source are calculated at the retarded time t − R (so
that we don’t have to write this over and over).

I am now going to give you an overview of where we are going so that you do not get distracted by the
mathematics required to get there. We will see that if the source’s center of mass is at rest in our coordinate
system, then Htt = 4GM/R = constant, and Hti = Hit = 0 (where, again, I am using the convention that
Latin-letter indices range only over the spatial component index values). Therefore, the only potentially
“waving” components of the trace-reversed metric perturbation Hµν are the spatial components Hij . We
will then show that the divergence theorem in conjunction with conservation of energy and momentum in
the source together imply that∫

src

T ij dV =
1

2

d2

dt2

∫
src

T ttxixj dV =
1

2

d2

dt2

∫
src

ρxixj dV ≡ 1

2
Ï ij (5.33)

where I ij ≡
∫
ρxixj dV is the source’s quadrupole moment tensor (note that it is a tensor only with

regard to rotations and displacements of the spatial coordinates). It turns out to be useful (for a number of
reasons) to use expressions involving the traceless reduced quadrupole moment tensor

−I ij ≡
∫
src

ρ(xixj − 1
3η
ijr2) dV where r2 ≡ x2 + y2 + z2 (5.34)

instead. This matrix is automatically traceless. It is also the tensor that one would use to expand the
Newtonian gravitational potential Φ at some large distance R from a compact and static but asymmetrical
source whose center of mass is a the origin:

Φ = −GM
R
− 3−I ij

2R3

(
Xi

R

)(
Xj

R

)
+ · · · (5.35)

where Xi is a component of the radius vector ~R from the source to the observer. Therefore, the reduced
quadrupole moment tensor expresses the leading component of the field’s asphericity.
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So the physically significant transverse-traceless components of the gravitational waves from a small-
slow-weak source (assuming that the observer is at a point in the +z direction relative to the source) are

Hxx
TT = 1

2 (Hxx −Hyy) =
2G

R
1
2 (Ïxx − Ïyy) =

2G

R
1
2 (−̈I xx − −̈I yy) ≡ 2G

R
−̈I xxTT (5.36a)

Hyy
TT = 1

2 (Hyy −Hxx) =
2G

R
1
2 (Ïyy − Ïxx) =

2G

R
1
2 (−̈I yy − −̈I xx) ≡ 2G

R
−̈I yyTT (5.36b)

Hxy
TT =

2G

R
Ïxy =

2G

R
−̈I xy ≡ 2G

R
−̈I xyTT (5.36c)

Note that Ïxx − Ïyy = −̈I xx − −̈I yy because the extra term − d2

dt2 [
∫
ρr2dV ] that appears in the reduced

quadrupole moment tensor terms cancels out of the difference. Equations 5.36 therefore define the “transverse-
traceless” components of the reduced quadrupole moment tensor for waves traveling in the +z direction. In
many cases, we will be able to orient our coordinate system so that waves for a given observer are moving
in this direction.

Note that a spherically symmetric source has zero quadrupole moment tensor, and therefore will not
radiate gravitational waves, even if it is expanding or contracting. According to Birchoff’s theorem, this
statement is actually true no matter how strong the gravitational fields are, how relativistic the source is,
and how close we are to the source. For a proof of this theorem, see chapter 23 in my book.1

Now that we see the big picture, let’s dig into the mathematics. First consider the metric perturbation
components Htµ. According to the definitions of the stress-energy components, in a LIF, we have

T tt = density of energy = ρ (5.37a)

T it = T ti = density of i-momentum (5.37b)

This should also be true (to the level of our approximations) in the “nearly cartesian” we use in the weak-
field limit (since Tµν is already of the order of hµν , corrections will be of order |hµν |2 and so are negligible).
Therefore, we have ∫

src

T tt dV =

∫
src

ρ dV = M, and

∫
src

T ti dV =

∫
src

T it dV = P i (5.38)

where M is the source’s total mass-energy and ~P is its total momentum. But if we anchor our coordinates
to the source’s center of mass, then ~P = 0. If our source is also “small,” then equation 5.32 tells us that

Htt =
4G

R

∫
src

T ttdV =
4GM

R
and Hti =

4G

R

∫
src

T tidV = 0 = Hit (5.39)

as I claimed earlier.
Now let’s consider the metric perturbation components Hij . In a LIF, conservation of energy requires

that ∂µT
µν = 0. Again, this should still be true to our level of approximation in our “nearly cartesian”

coordinates. If we break this up into time and space parts, we have

0 = ∂tT
tν + ∂iT

iν ⇒ ∂tT
tν = −∂iT iν (5.40)

Now, note that in the quantity T ttxixj that appears in equation 5.33, xi and xj are the components of the
position of a volume element in the source. Therefore, they are independent of time: though T tt inside the
volume element may vary with time, the position of the volume element itself will not. Therefore, we can do
the following steps of calculation:

∂t∂t(T
ttxixj) = (∂t∂tT

tt)xixj (5.41a)

= −(∂t∂mT
mt)xixj (5.41b)

= −(∂m∂tT
tm)xixj (5.41c)

= +(∂m∂nT
nm)xixj (5.41d)

= ∂m∂n(T mnxixj)− 2∂n(T nixj + T njxi) + 2T ij (5.41e)
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The last step follows from the product rule, though the argument is a bit involved. Start by applying the
product rule to the first term on the right of the last equation:

∂m∂n(T mnxixj) = ∂m[∂n(T mnxixj)] (5.42a)

= ∂m[(∂nT
mn)xixj + T mnδinx

j + T mnxiδjn] (5.42b)

= ∂m[(∂nT
mn)xixj + T mixj + T mjxi] (5.42c)

= (∂m∂nT
mn)xixj + (∂nT

mn)δimx
j + (∂nT

mn)xiδjm + ∂m(T mixj + T mjxi) (5.42d)

= (∂m∂nT
mn)xixj + (∂nT

in)xj + (∂nT
jn)xi + ∂m(T mixj + T mjxi) (5.42e)

= ∂m∂n(T mn)xixj + ∂n(T inxj)− T ij + ∂n(T jnxi)− T ji + ∂m(T mixj + T mjxi) (5.42f)

= ∂m∂n(T mn)xixj + 2∂n(T inxj + T jnxi)− 2T ij (5.42g)

Solving for the first term on the right of this equation then gives us

∂m∂n(T mn)xixj = ∂m∂n(T mnxixj)− 2∂n(T inxj + T jnxi) + 2T ij (5.43)

which is precisely the step from equation 5.41d to the next equation 5.41e.
Whew! After all that math, we still don’t seem to have something very pretty. But the divergence

theorem says that for an arbitrary 3-vector field ~F (x, y, z),∫
V

~∇ � ~F dV =

∮
S

~F � d ~A or

∫
V

∂iF
i dV =

∮
S

F i dAi in index notation (5.44)

The same is true for the integral of an arbitrary 3-tensor field:∫
V

∂iF
ij dV =

∮
S

F ij dAi (5.45)

(You can think of the jth column of the matrix F ij as being an independent 3-vector field.) Now, imagine
integrating both sides of equation 5.41e (repeated here)

∂t∂t(T
ttxixj) = ∂m∂n(T mnxixj)− 2∂n(T nixj + T njxi) + 2T ij (5.46)

over a volume large enough to completely enclose the source, so T ij = 0 on the volume’s surface. The
divergence theorem then implies that the first two terms on the right integrate to zero, leaving us with∫

V

∂t∂t(T
ttxixj) dV =

∫
V

2T ij dV (5.47)

We can then pull the double partial derivative outside the left integral (where it becomes an ordinary double
time derivative, since integral as a whole can only depend on time), divide both sides by 2, and substitute
in Iij ≡

∫
V
ρxixj dV =

∫
V
T ttxixj dV to get∫

src

T ij dV =
1

2

d2

dt2

∫
src

ρxixj dV =
1

2
Ï ij (5.48)

which is precisely equation 5.33. This was a long journey, but the result is worth it!

5.3.1 Exercise: Math Check.

Go through each of the steps in equations 5.41 and 5.42 to make sure that you understand exactly what I
did in each step.

5.4 Gravitational Wave Energy.

Now that we have calculated the gravitational waves that a source might radiate, we would very much like
to know how much energy they carry away from the source. Now, as we have discussed before, the concept
of energy conservation in general relativity is a difficult and potentially contentious topic. However, in the
weak-field limit, we are essentially using flat spacetime as a background, where the kind of integrals that
we need to do to make global (as opposed to local) statements about conservation of energy are possible.
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In this particular case, we can employ a generally accepted trick that satisfies one’s intuition about how
gravitational waves should conserve energy and which allows us to calculate an effective energy carried by
the waves in this limit.

The Einstein equation to first order in the metric perturbation hµν (and in the coordinates defined by
the Lorenz gauge condition) tells us that

−2G(1)
µν = �2Hµν = −16πGTµν (5.49)

where G
(1)
µν is the Einstein tensor evaluated to first order in hµν and Hµν = hµν − 1

2ηµνh as we have defined
before. This equation describes how a gravitational field is created by the density of non-gravitational energy
and momentum expressed by the stress-energy tensor Tµν .

Now the full Einstein equation also include feedback effects that describe how the gravitational field affects
itself: these are expressed by the fact that the Einstein tensor is nonlinear in the metric (contains terms
where metric components are multiplied together). People sometimes loosely (and arguably inaccurately)
interpret these internal feedback effects in the strong-field limit as telling us that the gravitational field has
an energy that is also the source of a gravitational field. But however one interprets these nonlinearities,
they do not appear in the weak-field approximation, because we are dropping terms of order |hµν |2 (indeed,
that is the point of the weak-field limit!).

The commonly accepted trick is to expand the left side of the weak-field Einstein equation to second
order in the metric:

−2G(1)
µν − 2G(2)

µν = �2Hµν − 2G(2)
µν = −16πGTµν (5.50)

(We can get away with only doing this to the left side, because on the right side, the second-order metric
terms hijhmn that in transverse-traceless gauge might actually appear on the right multiply pressure and
momentum flow terms that are much smaller than T tt = ρ in the “slow” limit where the fluid is nonrelativistic.
Since T tt is already of order hµν , the second-order terms on the right remain negligible.) Now remember
that in the weak-field limit, we are pretending that spacetime is flat and that gravity is completely described

by a tensor field Hµν that sits on top of that flat spacetime. Moving the 2G
(−2)
µν term to the other side yields

�2Hµν = −16πGTµν + 2G(2)
µν = −16πG(Tµν + TGWµν ) where TGWµν ≡ G

(2)
µν

8πG
(5.51)

In this way of interpreting the equation, TGWµν is acting along with the non-gravitational stress-energy Tµνto
create the gravitational field Hµν , so it is acting like a stress-energy of the gravitational field. Moreover,
since ∂µH

µν = 0 in the Lorenz gauge we are working in, so if we raise indices on both sides of the equation
above and then take the divergence of both sides, we get

∂µ(T µν + T µν
GW ) = 0 (5.52)

which expresses local conservation of the sum of matter-energy and gravitational field energy, and because
we are pretending we are in flat spacetime, we can integrate this to express a global conservation law
(gravitational wave energy that crosses the surface of a distant surface surrounding the source comes at the
expense of energy in the source).

The only problem is that the quantity T µν
GW is a tensor only with regard to Lorentz transformations, not

general coordinate transformations. It is not even invariant with regard to our gauge transformations. It
only begins to make sense if we average over several wavelengths of the the gravitational wave because it
happens that the terms that ruin the invariance average to zero. So as long as we are willing to accept these
limitations, modifying the definition of the gravitational stress-energy to read

TGWµν ≡ 〈G
(2)
µν 〉

8πG
(5.53)

where the 〈 〉 brackets indicate an average over several wavelengths, then we have something that we can
meaningfully treat as representing the energy of a gravitational wave.

So our next task is to actually evaluate this quantity for a gravitational wave in transverse-traceless
coordinates for a plus-polarized gravitational plane wave moving in the +z direction. Let’s define the
following short-hand expressions for quantities involved in the wave:

h+(t, z) ≡ A+ cos(ωt− ωz) = hTTxx = −hTTyy (5.54a)

ḣ+ ≡ ∂th+ = −∂zh+ = −A+ω sin(ωt− ωz) (5.54b)

ḧ+ ≡ ∂t∂th+ = ∂z∂zh+ = −∂t∂zh+ = −∂z∂th+ = −ω2h+ (5.54c)
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For this perturbation, the metric is completely diagonal so we can use the Diagonal Metric Worksheet
(with A = 1, B = 1 + h+, C = 1− h+, D = 1) to evaluate the Ricci tensor. Note that

B0 = C3 = −C0 = −B3 = ḣ+ (5.55a)

B00 = B33 = C03 = −B03 = −C00 = −C33 = ḧ+ (5.55b)

and all other derivatives are nonzero. So, for example, the only nonzero terms in the Diagonal Metric
Worksheet’s expansion for R00 = Rtt are:

Rtt = − 1
2BB00 − 1

2CC00 + 1
4B2B

2
0 + 1

4C2C
2
0

= − ḧ+
2(1 + h+)

− −ḧ+
2(1− h+)

+
ḣ2+

4(1 + h+)2
+

ḣ2+
4(1− h+)2

(5.56)

Now, we are only trying to keep through order h2+, so we can use the binomial approximation to rewrite
the denominators in the first two terms, because we only need values representing the denominators to be
accurate to order h+. For the second two terms, the numerators are already second order in h+, so the
denominators are simply 4 to this order. This leaves us with

Rtt = − 1
2 ḧ+(1− h+) + 1

2 ḧ+(1 + h+) + 1
2 ḣ

2
+ = ḧ+h+ + 1

2 ḣ
2
+ (5.57)

Now we average over several wavelengths:

〈Rtt〉 = 〈ḧ+h+ + 1
2 ḣ

2
+〉 = 〈−A2

+ω
2 cos2 θ + 1

2A
2
+ω

2 sin2 θ 〉
= −ω2A2

+〈cos2 θ − sin2 θ − 1
2 sin2 θ〉 = −ω2A2

+〈sin 2θ〉 − 1
2ω

2A2
+〈sin2 θ〉

= 0− 1
2 〈ḣ+ḣ+〉 (5.58)

where θ = ωt− ωz. In a similar way, you can show that Rzz = Rtt = −Rtz = −Rzt, and all other Rµν = 0.

5.4.1 Exercise: Rtz

The Diagonal Metric Worksheet’s expansion for Rtz is

Rtz = − 1
2BB03 − 1

2CC03 + 1
4B2B0B3 − 1

4C2C0C3 + 1
4ABA3B0 + 1

4ACA3C0 + 1
4DBD0B3 + 1

4DCD0C3 (5.59)

Use this to show that Rtz = −Rtt through second order in h+.

This means that

R = gµνRµν = −(1− htt)Rtt + (1− hzz)Rzz = −(1 + 0)Rtt + (1 + 0)Rtt = 0 (5.60)

in transverse-traceless gauge. So the effective energy density of an uprightly polarized gravitational wave is

TGWtt = −〈G
(2)
tt 〉

8πG
= −〈R

(2)
tt 〉

8πG
= +
〈ḣ+ḣ+〉
16πG

(5.61)

The energy contributed by a diagonally polarized wave is trickier to calculate (we can’t use the Diagonal
Metric Worksheet), But the result cannot be any different than the above, because we can convert an
uprightly polarized wave to a diagonally polarized wave simply by rotating coordinates by 45◦ around the z
axis. Therefore, the formula for the total energy density of an arbitrary gravitational wave moving in the z
direction must be

TGWtt =
1

16πG
〈ḣ+ḣ+ + ḣ×ḣ×〉 (5.62)

We can write this more generally in the form

TGWtt =
1

32πG
〈ḣTTjk ḣ

jk
TT 〉 (5.63)

(Since this sums over A2
xx and A2

yy and also A2
xy and A2

yx, we get a factor of 2 in the inside the brackets
that must be canceled by another factor of 2 in the denominator.) The advantage of this final expression is
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that the quantity inside the brackets is a scalar with respect to rotations in 3-space, and therefore will not
depend on what direction the waves are moving, as long as we are in transverse-traceless gauge for whatever
direction that is.

Finally, the gravitational wave energy flux (energy per unit time per unit area) in the z direction is

T tzGW = −TGWtz = +
〈R(2)

tz 〉
8πG

= −〈R
(2)
tt 〉

8πG
=

1

32πG
〈ḣTTjk ḣ

jk
TT 〉 = TGWtt (!) (5.64)

5.4.2 Exercise: Why is Energy Flux = Energy Density?

Explain physically why a gravitational wave energy flux should have the same magnitude as the gravitational
wave energy density in units where c = 1. (Hint: Consider a surface of area A perpendicular to the wave.
What volume of gravitational wave energy will go through that area in a time interval ∆t?)

5.5 Source Luminosities.

We now know how to calculate the gravitational waves moving in the +z direction generated by a given
source, and we also know how to calculate the energy flux involved in such waves. This should give us what
we need to know to calculate the total luminosity of a gravitational wave source, right?

The remaining problem is that gravitational waves from a given source will be radiated in all directions,
and right now we only know how to calculate the transverse-traceless components for a wave moving in
the +z direction. We need to find how to find the components transverse-traceless components for a wave
moving in an arbitrary direction ~n in a fixed coordinate system.

Conceptually, this is actually not difficult. We saw that for waves moving in the +z direction, we are
able to simply project the the solution Hµν onto a spatial plane perpendicular to the direction of motion,
and then subtract an equal portion of the matrix’s remaining trace from every nonzero diagonal element (to
make the matrix traceless). It is actually quite easy to do this for a direction parallel to any coordinate axis.

5.5.1 Exercise. TT Components for the +x Direction.

Consider an arbitrary amplitude matrix of the form Aµν for a gravitational wave moving in the +x direction.
Using the operations described above, find the AµνTT components for that wave.

The trick to doing this for an arbitrary direction ~n is to express these operations in terms of 3-tensor
operators that will therefore give the correct components in any coordinate system rotated with respect to
our base system. It turns out that the tensor operator

P ij ≡ δij − ninj (5.65)

(which, please note, is constructed entirely of 3-tensors) will project a vector on the plane perpendicular to
the unit vector ~n. When ~n is a unit vector in the z direction, this projection tensor has the value

P ij =

1 0 0
0 1 0
0 0 1

−
0 0 0

0 0 0
0 0 1

 =

1 0 0
0 1 0
0 0 0

 (5.66)

which should certainly do the job.
So since a second-rank tensor ought to behave like the tensor product of two vectors, the projection of a

3-tensor (say Iij) should be simply P i
mP

j
n I

mn. Finally, the trace of the projected matrix should be

I = η lk(P l
mP

k
n I

mn) = PmkP
k
n I

mn = (ηmk − nmnk)(δkn − nknm)Imn

= (ηmn − nmnn − nmnn + nmnkn
knn)Imn = (ηmn − nmnn)Imn = PmnI

mn (5.67)

since nknk = ~n � ~n = 1. (Remember that in this effectively flat spacetime, raising and lowering spatial
indices does nothing: ni = ηijn

j = (+1)ni.) Multiplying half of this times the projection matrix itself
should be a matrix having nonzero diagonal elements perpendicular to ~n that are both half the trace of
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the projected tensor. If we then subtract this from the transformed tensor, we should have the transverse-
traceless components. So the complete transformation operator should be

IjkTT = (P i
mP

j
n − 1

2P
ijPmn)Imn (5.68)

The energy flux of a gravitational wave in an arbitrary direction is 〈ḣjkTT ḣTTjk 〉/32πG, and we also know

that hijTT = (2GM/R)−̈I ijTT . Substituting the latter into the former yields

flux =
G

8πR2
〈−
...
I
ij
TT−

...
I
TT
ij 〉 (5.69)

for the flux in a particular direction (note the triple time-derivative of the reduced quadrupole moment
tensor!). We can now substitute in equation 5.68 to show (after a lot of work) that

flux in ~n-direction =
G

16πR2
〈2−

...
I
ij−

...
I ij − 4ninj−

...
I
m
i −

...
I mj + ninjnmnn−

...
I ij−

...
I mn〉 (5.70)

The advantage of this equation is that we can calculate the reduced quadrupole moment tensor in whatever
coordinate system we want, and calculate the flux of gravitational waves in any direction that we want.

We can find the total energy radiated by the source by computing the energy radiated per unit time
through a differential area element dA = R2 sin θ dθ dφ on the surface of a sphere of radius R much larger
than the source in a direction specified by the unit 3-vector ~n whose components are nx = sin θ cosφ, ny =
sin θ sinφ, and nz = cos θ, and then integrating that result over the entire sphere. The energy radiated
through the area element is simply the flux times dA, so the integral will yield the rate at which the source
is radiating. This in turn should be equal to the rate at which the source’s total energy E is decreasing due
to the energy carried away by gravitational radiation. So in summary, we have

−dE
dt

=
G

16πR2

∫ π

0

(∫ 2π

0

〈−
...
I
ij
TT−

...
I
TT
ij 〉 dφ

)
R2 sin θ dθ

=
G

16π

∫ π

0

(∫ 2π

0

〈2−
...
I
ij−

...
I ij − 4ninj−

...
I
m
i −

...
I mj + ninjnmnn−

...
I ij−

...
I mn〉 dφ

)
sin θ dθ (5.71)

Now, in the last expression, the components of the reduced quadrupole moment tensor −
...
I ij depend only

on the orientation and behavior of the source in our coordinate system: they have nothing to to with the
direction ~n that we are integrating over. Therefore, we can split this integral up into three parts and pull
the terms involving the quadrupole moment tensor out in front of the integral:

−dE
dt

=
2G

16π
〈−
...
I
ij−

...
I ij〉

∫ π

0

(∫ 2π

0

dφ

)
sin θ dθ − 4G

16π
〈−
...
I
m
i −

...
I mj〉

∫ π

0

(∫ 2π

0

ninj dφ

)
sin θ dθ

+
G

16π
〈−
...
I ij−

...
I mn〉

∫ π

0

(∫ 2π

0

ninjnmnn dφ

)
sin θ dθ (5.72)

Each remaining integral is simply a number whose value may depend on the choice of indices, but which is
relatively easy to evaluate. When all the dust settles, the result is simply

−dE
dt

=
G

5
〈−
...
I
ij−

...
I ij〉 (5.73)

This is an important and useful result.

5.6 Gravitational Waves from Binary Stars.

The most common cosmic sources of gravitational waves are binary systems. As a first approximation, let’s
treat the binary system as a pair of point masses m1 and m2 ≥ m1 separated by a fixed distance D. Let’s
set up a coordinate system so that the plane of the system’s rotation is the xy plane. The orbital radii of
the two masses are then

r1 =

(
m2

m1 +m2

)
D and r2 =

(
m1

m1 +m2

)
D (5.74)
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respectively. (Note that r1/r2 = m2/m1, which is appropriate if these are distances from the center of mass
at the origin, and also that r1 + r2 = D.) Let’s also define t = 0 to be the instant when mass m1 crosses the
+x axis. Then the coordinates x1, y1 and x2, y2 at an arbitrary time t are

x1 = r1 cosωt =
m2D

m1 +m2
cosωt and y1 = r1 sinωt =

m2D

m1 +m2
sinωt (5.75a)

x2 = −r2 cosωt = − m1D

m1 +m2
cosωt and y2 = −r2 sinωt = − m1D

m1 +m2
sinωt (5.75b)

where ω is the orbital angular frequency. Components of the reduced quadrupole moment tensor are therefore

−I xx =

∫
src

ρ(x2 − 1
3η
xxr2) dV = m1(x21 − 1

3r
2
1) +m2(x22 − 1

3r
2
2) = (m1r

2
1 +m2r

2
2)(cos2 ωt− 1

3 ) (5.76a)

−I xy =

∫
src

ρ(xy − 1
3η
xyr2) dV = m1(x1y1 − 0) +m2(x2y2 − 0) = (m1r

2
1 +m2r

2
2) cosωt sinωt (5.76b)

Similarly, −I yy = (m1r
2
1 +m2r

2
2)(sin2 ωt− 1

3 ),−I zz = 1
3 (m1r

2
1 +m2r

2
2) and all other −I ij = 0. We can simplify

this by using the double-angle trigonometric identities cos θ sin θ = 1
2 sin 2θ, cos2 θ = 1

2 (1 + cos 2θ), and

sin2 θ = 1
2 (1− cos 2θ), as well as the definitions

η ≡ m1m2

(m1 +m2)2
and M ≡ m1 +m2 (5.77)

Note also that

m1r
2
1 +m2r

2
2 = m1

(
m2D

m1 +m2

)2

+m2

(
m1D

m1 +m2

)2

=
m1m

2
2 +m2m

2
1

(m1 +m2)2
D2 =

m1m2D
2(m1 +m2)

(m1 +m2)2
= ηMD2 (5.78)

So our quadrupole moment tensor becomes

−I ij = 1
2MηD2

 1
3 + cos 2ωt sin 2ωt 0

sin 2ωt 1
3 − cos 2ωt 0

0 0 − 2
3

 (5.79)

(Note that 1
2 −

1
3 = 1

6 = 1
2 ·

1
3 .) The double-time derivative of this is

−̈I ij = −2MηD2ω2

cos 2ωt sin 2ωt 0
sin 2ωt − cos 2ωt 0

0 0 0

 (5.80)

This matrix already happens to be in transverse-traceless gauge for radiation in the +z direction, so for an
observer in the +z direction and a distance R from the system’s center of mass, the metric perturbation is

hijTT = Hij
TT =

2G

R
−̈I ijTT = −4GMηD2ω2

R

cos 2ω(t−R) sin 2ω(t−R) 0
sin 2ω(t−R) − cos 2ω(t−R) 0

0 0 0

 (5.81)

Note that A+ = A× = −4GMηD2ω2/R, so this wave has equal amounts of plus and cross polarization. Also
note the plus and cross polarizations are 90◦ out of phase, implying that wave is circularly polarized (the
ring-distortion ellipse will rotate counterclockwise instead of oscillating in and out). Finally note that the
wave has a frequency that is twice the orbital frequency of the system.

To find the gravitational waves radiated in another direction, we can use the general projection operator

−̈I jkTT = (P imP
j
n − 1

2P
ijPmn)−̈I jk with P ij = δij − ninj (5.82)

or in simple cases, we can just carry out the operations by eye. For example, the expression for the case of
waves moving in the +x direction is simply

hijTT =
2GMηD2ω2

R

0 0 0
0 cos 2ω(t−R) 0
0 0 − cos 2ω(t−R)

 (5.83)

This wave is purely plus-polarized and A+ has half the magnitude it had for waves moving in the +z direction.
This result is important, because many of the binaries we know about are eclipsing binaries, so we will be
viewing such binaries from this angle.

14



5.6.1 Exercise: TT Components by Eye

Arrive at equation 5.83 by applying the following steps: (1) Project −̈I jk given in equation 5.80 onto the
plane perpendicular to the x direction, (2) calculate the trace of the remaining components, (3) subtract half
the trace from each diagonal element not affected by the projection, and (4) evaluate at the retarded time.

The other point that you ought to take away from this example is that both the amplitude of the wave
and the relative magnitudes of its polarizations will depend on your viewing angle.

The total power radiated in all directions is given by

−dE
dt

=
G

5
〈−
...
I
ij−

...
I ij〉 =

32(GM)2η2D4ω6

5G
(5.84)

Note the astonishing 6th-power dependence of this energy loss on the rotational frequency!

5.6.2 Exercise: The Energy Loss Formula.

You can actually derive this result pretty easily from equation 5.80. Explain how. In particular, where does
the factor of 32 come from?

Finally, let’s see what effect this has on the system itself. Assume that the stars move slowly enough that
their velocities are non-relativistic, and that they are far enough apart that Newtonian gravitational theory
is adequate to predict their motion. Newton’s second law applied to the star with mass m1 tells us that

Gm1m2

D2
=
m1v

2
1

r1
⇒ Gm2

D2
= r1

(
v1
r1

)2

=
m2D

M
ω2 ⇒ D3 =

GM

ω2
(5.85)

We can use this to eliminate the usually unmeasurable quantity D in favor of the much more easily measured
orbital frequency ω. Substituting this back into the luminosity equation gives

−dE
dt

=
32(GM)2η2 ω6

5G

(
GM

ω2

)4/3

=
32η2

5G
(GMω)10/3 (5.86)

This shows that the rate of energy loss increases dramatically as the system’s total mass increases and/or
its orbital frequency increases.

This energy must come at the expense of the system’s orbital energy which one can show is equal to

E = −Gm1m2

2D
= −G(ηM2)ω2/3

2(GM)1/3
= − 1

2M(GMω)2/3η (5.87)

We see that stars in the binary pair will maintain neither a fixed separation D nor a constant angular
frequency ω, as assumed in the derivation: rather ω will increase with time (and D will decrease) as the
binary’s orbital energy is radiated away. This means that the calculations we have made are not quite right:
for example, our calculation for −̈I ij is not exact because we are ignoring the time dependence of both D
and ω. However, as long as the energy leaks away only very slowly, we are justified in ignoring these time
derivatives.

One way to quantify how “slowly” the energy is radiated is to calculate the time rate of change of the
orbit’s period T = 2π/ω. Note that since

E = − 1
2M(GMω)2/3η ⇒ dE = − 1

3M(GM)2/3ω−1/3η dω ⇒ dω

dE
= − 3ω1/3

M(GM)2/3η
(5.88)

Therefore, the orbital period’s time rate of change is

dT

dt
=
dT

dω

dω

dE

dE

dt
=

(
−2π

ω2

)(
− 3ω1/3

M(GM)2/3η

)(
−32η2

5G
(GMω)10/3

)
=

192πη

5
(GMω)5/3 (5.89)

Note that in general, unless the objects are actually coalescing, the orbit’s period T in meters of light travel
time for a typical binary pair will be very large compared to GM for the pair, so GMω ∝ GM/T will be
very small. This justifies our approximation that D and ω are approximately constant.
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A different way of expressing how the energy loss affects the orbit is to directly calculate the rate at
which the orbital frequency ω changes:

dω

dt
=
dω

dE

dE

dt
=

(
− 3ω1/3

M(GM)2/3η

)(
−32η2

5G
(GMω)10/3

)
=

96η

5
(GM)5/3ω11/3 =

96

5
(GM)5/3ω11/3

where M≡ η3/5M =

(
m1m2

[m1 +m2]2

)3/5

[m1 +m2] =
(m1m2)3/5

(m1 +m2)1/5
(5.90)

We call the quantity M the “chirp mass” of the binary, in that at any given orbital frequency, the rate at
which the frequency increases is determined completely by M.

As an example, consider the binary pair known as HM Cancri (RX JO806.3+1527). This system consists
of two white-dwarf stars with masses of 0.55 M� and 0.27 M� (M = 1200 m, η = 0.149/0.822 = 0.22)
orbiting with a period of 321.53 s = 9.6× 1010 m. The distance to this system is not well known but is
probably close to 16,000 ly = 1.5× 1020 m. For this system, GMω = 7.9× 10−8, and from that, one can
show that for this fairly face-on system (inclination angle 38◦),

A+ ≈
4GMηD2ω2

R
=

4GMη

R
(GMω)2/3 = 1.3× 10−22 (5.91a)

−dE
dt

=
32η2

5G
(GMω)10/3 = 2.4× 1028 W (5.91b)

dT

dt
=

192πη

5
(GMω)5/3 = −3.9× 10−11 (5.91c)

The gravitational wave power radiated by the system is fairly large: about 60 times the rate that the sun
radiates EM energy. However, this is such a small fraction of the system’s total energy that the rate of
change of the period is so small as to be difficult to detect (1.2 ms per year). To detect waves from this
system, a gravitational wave detector would need to be able to measure fractional changes in the distance
between floating masses of at least 10−22 at a frequency of 2/321.53 s = 6.2 mHz. The LIGO detector has
the appropriate sensitivity only in a frequency range of hundreds of Hz, not in this low frequency range.
But this system’s frequency is at the sweet spot for LISA, and would have a predicted signal-to-noise ratio
of better than 200 for a four-year observation period. This is one of about 50 candidate “LISA verification
binaries” detailed in a very recent paper. 2

Before 2015, the strongest evidence available for the existence of gravitational waves was observations of
the Hulse-Taylor binary system (PSR B1913+16), which includes a pulsar. Because a pulsar is an extraor-
dinarily good clock, one is able to infer this system’s orbital parameters to extraordinary accuracy from the
Doppler shifts of the pulsar’s signal. Though this system is complicated to analyze (because the orbit fairly
elliptical). This system has been observed for more than 40 years, and energy loss from this system over this
period is very clear, and the ratio of the observed loss to the accumulated loss predicted by general relativity
is currently 0.9983 ± 0.0016.3

5.6.3 Exercise: Power Radiated by HM Cnc.

Verify the power calculation given above. The value of G in units where c = 1 is 7.426× 10−28 m/kg, and
after using this to get the radiated power in kg (of energy) per meter (of time), multiply the result by the
appropriate power of c to convert to watts. What is that power of c?

As you can see, these calculations assume a completely Newtonian source, an approximation that gets
worse and worse as a binary system approaches coalescence. In the HM Cancri system above, the speeds of
the orbiting white dwarfs are about 400 km/s = 0.0013c, so it is possible that relativistic effects would be
measurable. To be able to better predict the waveforms from weakly-relativistic binary systems, a research
group associated with Luc Blanchet did calculations in the 1990s extending the work that we have rehearsed
here by calculating correction terms to higher orders in v/c. This leads to a “Post-Newtonian” expansion of
the gravitational wave from a binary pair in a circular orbit that looks something like 4

h+ =
2GMη

R
(GMω)2/3(B

(0)
+ + y1/2B

(1/2)
+ + y1B

(1)
+ + y3/2B

(3/2)
+ + y2B

(2)
+ ) (5.92)

where y ≡ (GMω)2/3 ≈ GM/D ≈ v2, where

B
(0)
+ = −(1 + cos2 i) cos 2Ψ, B

(1/2)
+ = − sin i

8

δm

M

[
(5 + cos2 i) cosΨ + 9(1 + cos2 i) cos 3Ψ

]
(5.93)
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and so on, where i is the inclination angle between the orbit’s normal and the line of sight, and Ψ is the
orbital phase, whose leading term is ω(t − R) but also which has correction terms. A similar expansion
yields the cross polarization. (In this formulation, the inclination-angle dependence arises from projecting
the transverse- traceless components onto the plane perpendicular to the line of sight.) We see that this
formula represents basically an expansion in a power series in the orbital speed v. The series above carries
this expansion out to a factor of (GM/D)2 ≈ v4, which people describe as being to “post-Newtonian order
2” or 2PN. The additional terms come mostly from higher-order corrections to the motions of the binary
stars coming from the geodesic equations of motion.

I am not going to go over this approach in any depth, but I thought that you should know about it. Note
that the additional terms add harmonics to the waveform (up to 6 times the orbital frequency in the 2PN
terms) that convey additional information about the source.

My research over the past few decades has been in trying to model what LISA could learn about various
sources considering the additional information conveyed in the harmonics and comparing that to what one
would learn by focusing only on the fundamental wave. In certain cases, we have found that the harmonics
can resolve degeneracies that would arise in the basic waveform, allowing one to determine source parameters
that would otherwise be uncertain. To this end, I have developed a computer application which, given the
parameters for a specific binary source, calculates the gravitational wave produced by that source, models
its detection by LISA (observing over a year) and then estimates what uncertainties in the parameter values
will result from noise in the LISA detector.

Currently, I am working with a student to add in the effects that the spin-spin and spin-orbit interactions
have on the waveform and phase. This has involved rewriting the program almost completely, as many
quantities that we could calculate analytically before now have to be calculated numerically. We are currently
in the process of testing the program to ensure that it is giving the same results as the initial program under
the same circumstances (a process that, in the way research usually goes, has uncovered some issues with
the original program as well). We hope to be producing a publication soon about this research. I am also
happy to talk in more depth about this particular research project with anyone who is interested.

We are finally at the end! I hope that you have enjoyed this brief overview of the path from the basic
principles of GR through its practical application to gravitational waves. I will be around for the rest of the
month and would be happy to answer any questions you might have about what I have presented and/or
the homework problems. Thank you for your attention, and the honor of presenting to you here.

Homework Problems

5.1 Here is the other approach to arriving at transverse-traceless gauge. In this problem we will actually de-
rive a coordinate transformation that will force an arbitrary metric perturbation satisfying the Einstein
equation and the Lorenz condition into transverse-traceless form. Consider a coordinate transformation
of the form ξµ = Bµ sin kσx

σ, where Bµ are a set of four undetermined constants.

(a) Show that this gauge transformation satisfies the condition �2ξµ = 0 that we must obey if the
transformation is to preserve the Lorenz gauge condition.

(b) If our original metric perturbation is Hµν = Aµν cos kσx
σ, show that the new transformed A-

matrix satisfies A′µν = Aµν − kµBν − kνBµ + ηµνkαB
α

(c) To make the wave “transverse”, we want to set all components of the wave that involve a t index
to zero: 0 = A′ tν = Atν − ktBν − kνBt + ηtνkαB

α. Show that the “traceless” condition requires
that 0 = A′µµ = Aµµ + 2kµB

µ.

(d) If we solve the latter equation for kµB
µ and plug it into the other, it becomes 0 = A′ tν =

Atν − ktBν − kνBt− 1
2η
tνAµµ. For the particular case of kt = −ω, kx = ky = 0, kz = ω, solve this

set of four equations for four coefficientsBt, Bx, By, andBz in terms of whatever the original values
of Aµν were that will make this equation true. (Partial answer: Bz = ω−1[Atz − 1

2A
tt − 1

4A
µ
µ]).

(e) Then argue that the Lorenz gauge condition applied to transformed matrix A′µν also requires
that A′ zν = 0, ensuring that the transformed matrix is completely transverse.

(Note that this does not quite exclude the possibility that another transformation could erase the
remaining nonzero elements. The argument that I presented based on the Riemann tensor does exclude
that possibility: we cannot transform coordinate in a way that changes a curved spacetime into a flat
spacetime.)
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5.2 Consider a rigid rod that separates two small spheres of mass m so that they are a distance L apart
along the X axis in a LOF observation frame. (I am using X to distinguish the LOF frame coordinate
from the comoving TT-coordinate x, but assume that these axes point in the same direction. )Define
the origin of that axis so that the centers of the spheres are at X = ± 1

2L. Suppose a plus-polarized
gravitational wave with amplitude A+ and angular frequency ω passes through this object. Determine
the X component of the force that the rod must exert on each mass to hold it in place. (Hint: We
know that the distances between freely-floating objects will change as the gravitational wave passes,
so objects that are held a fixed distance apart are not following geodesics.)

5.3 Calculate the flux (in W/m2) of a plus-polarized gravitational wave with an amplitude of A+ = 10−20

and a frequency of 100 Hz (the sort of gravitational wave that LIGO might detect). Are you surprised?

5.4 Consider two small but dense objects of mass m connected by a massless spring with zero relaxed
length. The masses are oscillating back and forth along the x axis (barely missing each other at the
origin) with amplitude D and angular frequency ω.

(a) Calculate the reduced quadrupole moment tensor −I ij for this system.

(b) Calculate the transverse-traceless gravitational wave components as observed by an observer a
distance R away in the +z direction. Is the wave plus-polarized, cross-polarized or a combination.

(c) Calculate the transverse-traceless gravitational wave components as observed by an observer a
distance R away in the +y direction.

(d) Calculate the transverse-traceless gravitational wave components as observed by an observer a
distance R away in the +x direction. Are you surprised by the result?

5.5 Estimate the rate at which the orbiting Earth radiates energy in the form of gravitational waves. Is it
likely that the earth will spiral into the sun any time soon as a result of this energy loss?

5.6 PSR J0737-3039 is a recently discovered binary pulsar system consisting of two neutron stars, one with
a mass of 1.337 M� and the other with a mass of 1.250 M�, orbiting with a period of 2.4 h. Their
orbit is only mildly eccentric, and we are viewing the orbit almost edge-on. This system is about 1800
ly away. Find (a) the value of GMω for this system, (b) the gravitational wave amplitude A+ at the
Earth, (c) the total gravitational wave power this object emits in watts, and (d) the rate dT/dt at
which its period is changing.

5.7 If you love algebra, show that equation 5.70 follows from equations 5.69 and 5.68 as well as the definition
of the projection operator 5.65. (There is nothing horribly difficult about this, but one must be careful
to keep track of all the terms and all the indices.)

5.8 Consider the integral ∫ π

0

(∫ 2π

0

ninj dφ

)
sin θ dθ (5.94)

(a) Argue that the integral will be zero if i 6= j.

(b) Argue physically that the integral must have the same value if i = j, no matter what the value of
i might be. Therefore, the result will be proportional to ηij .

(c) Pick one integral to do to show that this quantity is in fact 4π
3 η

ij .

(d) Use a similar argument to show that∫ π

0

(∫ 2π

0

ninjnmnn dφ

)
sin θ dθ =

4π

15
(ηijηmn + ηjmηin + ηimηjn) (5.95)

(e) Use this to arrive at equation 5.73.
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