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5.1 Overview of this Session

In the last session, we began exploring the weak-field approximation to general relativity and our gauge
freedom in choosing the solutions to the weak-field Einstein equation. In this final session we will explore
solutions to the weak-field Einstein equation that describe gravitational waves and how they are generated.

An overview of this session’s sections follows:

5.2 Transverse-Traceless Gauge. Not all wavelike solutions of the weak-field Einstein equation are
actual waves. This section discusses how we can discover which waves are real and which are “fake,”
and how going to the so-called “transverse-traceless” gauge focuses our attention on the real physical
of gravitational waves and how they a↵ect matter.

5.3 Generating Gravitational Waves. In this section, we will see that for small, weak, and slow sources,
we can link the gravitational waves generated to the double time derivative of the source’s reduced
quadrupole moment tensor.

5.4 Gravitational Wave Energy. This section explores the tricky issue of how we can determine the
“energy” that a gravitational wave carries.

5.5 Source Luminosities. In order to calculate the gravitational-wave luminosity of sources, we need to
be able to determine the transverse-traceless components of the metric perturbation for waves moving
in arbitrary directions. This section devises such a method and develops a formula for a source’s
luminosity.

5.6 Gravitational Waves from Binary Stars. This section talks about how we can specifically calculate
the gravitational radiation from binary star systems (including black-hole binaries), which are the main
(known) astrophysical source of detectable gravitational waves. This will include discussion of the
proposed LISA detector and post-newtonian approximations for gravitational waves from such sources.

5.2 The Transverse-Traceless Gauge.

We begin where we left o↵ last time. We seek to solve the weak-field Einstein equation in nearly cartesian
coordinates, where it has the form

⇤2Hµ⌫ = �16⇡GTµ⌫ where Hµ⌫ ⌘ hµ⌫ � 1
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subject to the Lorenz gauge condition
@
µ

Hµ⌫ = 0 (5.2)

that restricts our choice of coordinates. But recall also that we have some remaining freedom to choose
coordinates: we can apply coordinate transformations of the form

x0↵ = x↵ + ⇠↵ where |⇠↵| ⌧ 1 and ⇤2⇠↵ = 0 (5.3)

Under such a coordinate transformation, we found that

H 0µ⌫ = Hµ⌫ � @µ⇠⌫ � @µ⇠⌫ + ⌘µ⌫@
↵

⇠↵ (5.4)

Now, in empty space, the weak-field Einstein equation has the form ⇤2Hµ⌫ = 0. Since ⇤2f = 0 for
any function f is the wave equation, we can immediately see that we are going to have gravitational wave
solutions. Let’s attempt a plane-wave solution of the form

Hµ⌫ = Aµ⌫ cos k
�

x� = Aµ⌫ cos(~k ⇧ ~r � !t) (5.5)

where Aµ⌫ is a constant matrix and k
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is a constant covector with components k
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. Such a

wave is a plane wave whose crests are perpendicular to the ~k direction and which move in the +~k direction
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5.1 Overview of this Session

In the last session, we began exploring the weak-field approximation to general relativity and our gauge
freedom in choosing the solutions to the weak-field Einstein equation. In this final session we will explore
solutions to the weak-field Einstein equation that describe gravitational waves and how they are generated.

An overview of this session’s sections follows:

5.2 Transverse-Traceless Gauge. Not all wavelike solutions of the weak-field Einstein equation are
actual waves. This section discusses how we can discover which waves are real and which are “fake,”
and how going to the so-called “transverse-traceless” gauge focuses our attention on the real physical
of gravitational waves and how they a↵ect matter.

5.3 Generating Gravitational Waves. In this section, we will see that for small, weak, and slow sources,
we can link the gravitational waves generated to the double time derivative of the source’s reduced
quadrupole moment tensor.

5.4 Gravitational Wave Energy. This section explores the tricky issue of how we can determine the
“energy” that a gravitational wave carries.

5.5 Source Luminosities. In order to calculate the gravitational-wave luminosity of sources, we need to
be able to determine the transverse-traceless components of the metric perturbation for waves moving
in arbitrary directions. This section devises such a method and develops a formula for a source’s
luminosity.

5.6 Gravitational Waves from Binary Stars. This section talks about how we can specifically calculate
the gravitational radiation from binary star systems (including black-hole binaries), which are the main
(known) astrophysical source of detectable gravitational waves. This will include discussion of the
proposed LISA detector and post-newtonian approximations for gravitational waves from such sources.

5.2 The Transverse-Traceless Gauge.

We begin where we left o↵ last time. We seek to solve the weak-field Einstein equation in nearly cartesian
coordinates, where it has the form

⇤2Hµ⌫ = �16⇡GTµ⌫ where Hµ⌫ ⌘ hµ⌫ � 1
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that restricts our choice of coordinates. But recall also that we have some remaining freedom to choose
coordinates: we can apply coordinate transformations of the form

x0↵ = x↵ + ⇠↵ where |⇠↵| ⌧ 1 and ⇤2⇠↵ = 0 (5.3)

Under such a coordinate transformation, we found that

H 0µ⌫ = Hµ⌫ � @µ⇠⌫ � @µ⇠⌫ + ⌘µ⌫@
↵

⇠↵ (5.4)

Now, in empty space, the weak-field Einstein equation has the form ⇤2Hµ⌫ = 0. Since ⇤2f = 0 for
any function f is the wave equation, we can immediately see that we are going to have gravitational wave
solutions. Let’s attempt a plane-wave solution of the form

Hµ⌫ = Aµ⌫ cos k
�

x� = Aµ⌫ cos(~k ⇧ ~r � !t) (5.5)
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5.1 Overview of this Session

In the last session, we began exploring the weak-field approximation to general relativity and our gauge
freedom in choosing the solutions to the weak-field Einstein equation. In this final session we will explore
solutions to the weak-field Einstein equation that describe gravitational waves and how they are generated.

An overview of this session’s sections follows:

5.2 Transverse-Traceless Gauge. Not all wavelike solutions of the weak-field Einstein equation are
actual waves. This section discusses how we can discover which waves are real and which are “fake,”
and how going to the so-called “transverse-traceless” gauge focuses our attention on the real physical
of gravitational waves and how they a↵ect matter.

5.3 Generating Gravitational Waves. In this section, we will see that for small, weak, and slow sources,
we can link the gravitational waves generated to the double time derivative of the source’s reduced
quadrupole moment tensor.

5.4 Gravitational Wave Energy. This section explores the tricky issue of how we can determine the
“energy” that a gravitational wave carries.

5.5 Source Luminosities. In order to calculate the gravitational-wave luminosity of sources, we need to
be able to determine the transverse-traceless components of the metric perturbation for waves moving
in arbitrary directions. This section devises such a method and develops a formula for a source’s
luminosity.

5.6 Gravitational Waves from Binary Stars. This section talks about how we can specifically calculate
the gravitational radiation from binary star systems (including black-hole binaries), which are the main
(known) astrophysical source of detectable gravitational waves. This will include discussion of the
proposed LISA detector and post-newtonian approximations for gravitational waves from such sources.

5.2 The Transverse-Traceless Gauge.

We begin where we left o↵ last time. We seek to solve the weak-field Einstein equation in nearly cartesian
coordinates, where it has the form
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Hµ⌫ = 0 (5.2)

that restricts our choice of coordinates. But recall also that we have some remaining freedom to choose
coordinates: we can apply coordinate transformations of the form

x0↵ = x↵ + ⇠↵ where |⇠↵| ⌧ 1 and ⇤2⇠↵ = 0 (5.3)

Under such a coordinate transformation, we found that

H 0µ⌫ = Hµ⌫ � @µ⇠⌫ � @µ⇠⌫ + ⌘µ⌫@
↵

⇠↵ (5.4)

Now, in empty space, the weak-field Einstein equation has the form ⇤2Hµ⌫ = 0. Since ⇤2f = 0 for
any function f is the wave equation, we can immediately see that we are going to have gravitational wave
solutions. Let’s attempt a plane-wave solution of the form

Hµ⌫ = Aµ⌫ cos k
�

x� = Aµ⌫ cos(~k ⇧ ~r � !t) (5.5)
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5.1 Overview of this Session

In the last session, we began exploring the weak-field approximation to general relativity and our gauge
freedom in choosing the solutions to the weak-field Einstein equation. In this final session we will explore
solutions to the weak-field Einstein equation that describe gravitational waves and how they are generated.

An overview of this session’s sections follows:

5.2 Transverse-Traceless Gauge. Not all wavelike solutions of the weak-field Einstein equation are
actual waves. This section discusses how we can discover which waves are real and which are “fake,”
and how going to the so-called “transverse-traceless” gauge focuses our attention on the real physical
of gravitational waves and how they a↵ect matter.

5.3 Generating Gravitational Waves. In this section, we will see that for small, weak, and slow sources,
we can link the gravitational waves generated to the double time derivative of the source’s reduced
quadrupole moment tensor.

5.4 Gravitational Wave Energy. This section explores the tricky issue of how we can determine the
“energy” that a gravitational wave carries.

5.5 Source Luminosities. In order to calculate the gravitational-wave luminosity of sources, we need to
be able to determine the transverse-traceless components of the metric perturbation for waves moving
in arbitrary directions. This section devises such a method and develops a formula for a source’s
luminosity.

5.6 Gravitational Waves from Binary Stars. This section talks about how we can specifically calculate
the gravitational radiation from binary star systems (including black-hole binaries), which are the main
(known) astrophysical source of detectable gravitational waves. This will include discussion of the
proposed LISA detector and post-newtonian approximations for gravitational waves from such sources.

5.2 The Transverse-Traceless Gauge.

We begin where we left o↵ last time. We seek to solve the weak-field Einstein equation in nearly cartesian
coordinates, where it has the form

⇤2Hµ⌫ = �16⇡GTµ⌫ where Hµ⌫ ⌘ hµ⌫ � 1
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subject to the Lorenz gauge condition
@
µ

Hµ⌫ = 0 (5.2)

that restricts our choice of coordinates. But recall also that we have some remaining freedom to choose
coordinates: we can apply coordinate transformations of the form

x0↵ = x↵ + ⇠↵ where |⇠↵| ⌧ 1 and ⇤2⇠↵ = 0 (5.3)

Under such a coordinate transformation, we found that

H 0µ⌫ = Hµ⌫ � @µ⇠⌫ � @µ⇠⌫ + ⌘µ⌫@
↵

⇠↵ (5.4)

Now, in empty space, the weak-field Einstein equation has the form ⇤2Hµ⌫ = 0. Since ⇤2f = 0 for
any function f is the wave equation, we can immediately see that we are going to have gravitational wave
solutions. Let’s attempt a plane-wave solution of the form

Hµ⌫ = Aµ⌫ cos k
�

x� = Aµ⌫ cos(~k ⇧ ~r � !t) (5.5)

where Aµ⌫ is a constant matrix and k
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5.1 Overview of this Session

In the last session, we began exploring the weak-field approximation to general relativity and our gauge
freedom in choosing the solutions to the weak-field Einstein equation. In this final session we will explore
solutions to the weak-field Einstein equation that describe gravitational waves and how they are generated.

An overview of this session’s sections follows:

5.2 Transverse-Traceless Gauge. Not all wavelike solutions of the weak-field Einstein equation are
actual waves. This section discusses how we can discover which waves are real and which are “fake,”
and how going to the so-called “transverse-traceless” gauge focuses our attention on the real physical
of gravitational waves and how they a↵ect matter.

5.3 Generating Gravitational Waves. In this section, we will see that for small, weak, and slow sources,
we can link the gravitational waves generated to the double time derivative of the source’s reduced
quadrupole moment tensor.

5.4 Gravitational Wave Energy. This section explores the tricky issue of how we can determine the
“energy” that a gravitational wave carries.

5.5 Source Luminosities. In order to calculate the gravitational-wave luminosity of sources, we need to
be able to determine the transverse-traceless components of the metric perturbation for waves moving
in arbitrary directions. This section devises such a method and develops a formula for a source’s
luminosity.

5.6 Gravitational Waves from Binary Stars. This section talks about how we can specifically calculate
the gravitational radiation from binary star systems (including black-hole binaries), which are the main
(known) astrophysical source of detectable gravitational waves. This will include discussion of the
proposed LISA detector and post-newtonian approximations for gravitational waves from such sources.

5.2 The Transverse-Traceless Gauge.

We begin where we left o↵ last time. We seek to solve the weak-field Einstein equation in nearly cartesian
coordinates, where it has the form

⇤2Hµ⌫ = �16⇡GTµ⌫ where Hµ⌫ ⌘ hµ⌫ � 1
2⌘
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subject to the Lorenz gauge condition
@
µ

Hµ⌫ = 0 (5.2)

that restricts our choice of coordinates. But recall also that we have some remaining freedom to choose
coordinates: we can apply coordinate transformations of the form

x0↵ = x↵ + ⇠↵ where |⇠↵| ⌧ 1 and ⇤2⇠↵ = 0 (5.3)

Under such a coordinate transformation, we found that

H 0µ⌫ = Hµ⌫ � @µ⇠⌫ � @µ⇠⌫ + ⌘µ⌫@
↵

⇠↵ (5.4)

Now, in empty space, the weak-field Einstein equation has the form ⇤2Hµ⌫ = 0. Since ⇤2f = 0 for
any function f is the wave equation, we can immediately see that we are going to have gravitational wave
solutions. Let’s attempt a plane-wave solution of the form

Hµ⌫ = Aµ⌫ cos k
�

x� = Aµ⌫ cos(~k ⇧ ~r � !t) (5.5)

where Aµ⌫ is a constant matrix and k
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t
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5.1 Overview of this Session

In the last session, we began exploring the weak-field approximation to general relativity and our gauge
freedom in choosing the solutions to the weak-field Einstein equation. In this final session we will explore
solutions to the weak-field Einstein equation that describe gravitational waves and how they are generated.

An overview of this session’s sections follows:

5.2 Transverse-Traceless Gauge. Not all wavelike solutions of the weak-field Einstein equation are
actual waves. This section discusses how we can discover which waves are real and which are “fake,”
and how going to the so-called “transverse-traceless” gauge focuses our attention on the real physical
of gravitational waves and how they a↵ect matter.

5.3 Generating Gravitational Waves. In this section, we will see that for small, weak, and slow sources,
we can link the gravitational waves generated to the double time derivative of the source’s reduced
quadrupole moment tensor.

5.4 Gravitational Wave Energy. This section explores the tricky issue of how we can determine the
“energy” that a gravitational wave carries.

5.5 Source Luminosities. In order to calculate the gravitational-wave luminosity of sources, we need to
be able to determine the transverse-traceless components of the metric perturbation for waves moving
in arbitrary directions. This section devises such a method and develops a formula for a source’s
luminosity.

5.6 Gravitational Waves from Binary Stars. This section talks about how we can specifically calculate
the gravitational radiation from binary star systems (including black-hole binaries), which are the main
(known) astrophysical source of detectable gravitational waves. This will include discussion of the
proposed LISA detector and post-newtonian approximations for gravitational waves from such sources.

5.2 The Transverse-Traceless Gauge.

We begin where we left o↵ last time. We seek to solve the weak-field Einstein equation in nearly cartesian
coordinates, where it has the form

⇤2Hµ⌫ = �16⇡GTµ⌫ where Hµ⌫ ⌘ hµ⌫ � 1
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subject to the Lorenz gauge condition
@
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Hµ⌫ = 0 (5.2)

that restricts our choice of coordinates. But recall also that we have some remaining freedom to choose
coordinates: we can apply coordinate transformations of the form

x0↵ = x↵ + ⇠↵ where |⇠↵| ⌧ 1 and ⇤2⇠↵ = 0 (5.3)

Under such a coordinate transformation, we found that

H 0µ⌫ = Hµ⌫ � @µ⇠⌫ � @µ⇠⌫ + ⌘µ⌫@
↵

⇠↵ (5.4)

Now, in empty space, the weak-field Einstein equation has the form ⇤2Hµ⌫ = 0. Since ⇤2f = 0 for
any function f is the wave equation, we can immediately see that we are going to have gravitational wave
solutions. Let’s attempt a plane-wave solution of the form

Hµ⌫ = Aµ⌫ cos k
�

x� = Aµ⌫ cos(~k ⇧ ~r � !t) (5.5)

where Aµ⌫ is a constant matrix and k
�

is a constant covector with components k
t
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. Such a

wave is a plane wave whose crests are perpendicular to the ~k direction and which move in the +~k direction
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5.1 Overview of this Session

In the last session, we began exploring the weak-field approximation to general relativity and our gauge
freedom in choosing the solutions to the weak-field Einstein equation. In this final session we will explore
solutions to the weak-field Einstein equation that describe gravitational waves and how they are generated.

An overview of this session’s sections follows:

5.2 Transverse-Traceless Gauge. Not all wavelike solutions of the weak-field Einstein equation are
actual waves. This section discusses how we can discover which waves are real and which are “fake,”
and how going to the so-called “transverse-traceless” gauge focuses our attention on the real physical
of gravitational waves and how they a↵ect matter.

5.3 Generating Gravitational Waves. In this section, we will see that for small, weak, and slow sources,
we can link the gravitational waves generated to the double time derivative of the source’s reduced
quadrupole moment tensor.

5.4 Gravitational Wave Energy. This section explores the tricky issue of how we can determine the
“energy” that a gravitational wave carries.

5.5 Source Luminosities. In order to calculate the gravitational-wave luminosity of sources, we need to
be able to determine the transverse-traceless components of the metric perturbation for waves moving
in arbitrary directions. This section devises such a method and develops a formula for a source’s
luminosity.

5.6 Gravitational Waves from Binary Stars. This section talks about how we can specifically calculate
the gravitational radiation from binary star systems (including black-hole binaries), which are the main
(known) astrophysical source of detectable gravitational waves. This will include discussion of the
proposed LISA detector and post-newtonian approximations for gravitational waves from such sources.

5.2 The Transverse-Traceless Gauge.

We begin where we left o↵ last time. We seek to solve the weak-field Einstein equation in nearly cartesian
coordinates, where it has the form

⇤2Hµ⌫ = �16⇡GTµ⌫ where Hµ⌫ ⌘ hµ⌫ � 1
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subject to the Lorenz gauge condition
@
µ

Hµ⌫ = 0 (5.2)

that restricts our choice of coordinates. But recall also that we have some remaining freedom to choose
coordinates: we can apply coordinate transformations of the form

x0↵ = x↵ + ⇠↵ where |⇠↵| ⌧ 1 and ⇤2⇠↵ = 0 (5.3)

Under such a coordinate transformation, we found that

H 0µ⌫ = Hµ⌫ � @µ⇠⌫ � @µ⇠⌫ + ⌘µ⌫@
↵

⇠↵ (5.4)

Now, in empty space, the weak-field Einstein equation has the form ⇤2Hµ⌫ = 0. Since ⇤2f = 0 for
any function f is the wave equation, we can immediately see that we are going to have gravitational wave
solutions. Let’s attempt a plane-wave solution of the form

Hµ⌫ = Aµ⌫ cos k
�

x� = Aµ⌫ cos(~k ⇧ ~r � !t) (5.5)
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5.1 Overview of this Session

In the last session, we began exploring the weak-field approximation to general relativity and our gauge
freedom in choosing the solutions to the weak-field Einstein equation. In this final session we will explore
solutions to the weak-field Einstein equation that describe gravitational waves and how they are generated.

An overview of this session’s sections follows:

5.2 Transverse-Traceless Gauge. Not all wavelike solutions of the weak-field Einstein equation are
actual waves. This section discusses how we can discover which waves are real and which are “fake,”
and how going to the so-called “transverse-traceless” gauge focuses our attention on the real physical
of gravitational waves and how they a↵ect matter.

5.3 Generating Gravitational Waves. In this section, we will see that for small, weak, and slow sources,
we can link the gravitational waves generated to the double time derivative of the source’s reduced
quadrupole moment tensor.

5.4 Gravitational Wave Energy. This section explores the tricky issue of how we can determine the
“energy” that a gravitational wave carries.

5.5 Source Luminosities. In order to calculate the gravitational-wave luminosity of sources, we need to
be able to determine the transverse-traceless components of the metric perturbation for waves moving
in arbitrary directions. This section devises such a method and develops a formula for a source’s
luminosity.

5.6 Gravitational Waves from Binary Stars. This section talks about how we can specifically calculate
the gravitational radiation from binary star systems (including black-hole binaries), which are the main
(known) astrophysical source of detectable gravitational waves. This will include discussion of the
proposed LISA detector and post-newtonian approximations for gravitational waves from such sources.

5.2 The Transverse-Traceless Gauge.

We begin where we left o↵ last time. We seek to solve the weak-field Einstein equation in nearly cartesian
coordinates, where it has the form

⇤2Hµ⌫ = �16⇡GTµ⌫ where Hµ⌫ ⌘ hµ⌫ � 1
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subject to the Lorenz gauge condition
@
µ

Hµ⌫ = 0 (5.2)

that restricts our choice of coordinates. But recall also that we have some remaining freedom to choose
coordinates: we can apply coordinate transformations of the form

x0↵ = x↵ + ⇠↵ where |⇠↵| ⌧ 1 and ⇤2⇠↵ = 0 (5.3)

Under such a coordinate transformation, we found that

H 0µ⌫ = Hµ⌫ � @µ⇠⌫ � @µ⇠⌫ + ⌘µ⌫@
↵

⇠↵ (5.4)

Now, in empty space, the weak-field Einstein equation has the form ⇤2Hµ⌫ = 0. Since ⇤2f = 0 for
any function f is the wave equation, we can immediately see that we are going to have gravitational wave
solutions. Let’s attempt a plane-wave solution of the form

Hµ⌫ = Aµ⌫ cos k
�

x� = Aµ⌫ cos(~k ⇧ ~r � !t) (5.5)

where Aµ⌫ is a constant matrix and k
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5.1 Overview of this Session

In the last session, we began exploring the weak-field approximation to general relativity and our gauge
freedom in choosing the solutions to the weak-field Einstein equation. In this final session we will explore
solutions to the weak-field Einstein equation that describe gravitational waves and how they are generated.

An overview of this session’s sections follows:

5.2 Transverse-Traceless Gauge. Not all wavelike solutions of the weak-field Einstein equation are
actual waves. This section discusses how we can discover which waves are real and which are “fake,”
and how going to the so-called “transverse-traceless” gauge focuses our attention on the real physical
of gravitational waves and how they a↵ect matter.

5.3 Generating Gravitational Waves. In this section, we will see that for small, weak, and slow sources,
we can link the gravitational waves generated to the double time derivative of the source’s reduced
quadrupole moment tensor.

5.4 Gravitational Wave Energy. This section explores the tricky issue of how we can determine the
“energy” that a gravitational wave carries.

5.5 Source Luminosities. In order to calculate the gravitational-wave luminosity of sources, we need to
be able to determine the transverse-traceless components of the metric perturbation for waves moving
in arbitrary directions. This section devises such a method and develops a formula for a source’s
luminosity.

5.6 Gravitational Waves from Binary Stars. This section talks about how we can specifically calculate
the gravitational radiation from binary star systems (including black-hole binaries), which are the main
(known) astrophysical source of detectable gravitational waves. This will include discussion of the
proposed LISA detector and post-newtonian approximations for gravitational waves from such sources.
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Indeed, the fact that we must have ! = k means that the waves’ group velocityv
g

= d!/dk = 1 as well. So
we see that (like electromagnetic waves) gravitational waves in a vacuum are dispersionless and move with
the maximum speed allowed by special relativity.

However, just because we have a plane wave solution to the weak-field Einstein equation in empty space
does not necessarily mean that we have an actual gravitational wave. In this case, a wavy metric perturbation
may describe a physical wavelike distortion of spacetime, but it may just as easily describe a wavy coordinate
system on top of a flat spacetime. How can we tell which is which?

There are several ways to do this. One common method is to use our additional gauge freedom (coordinate
transformations that satisfy ⇤2⇠↵ = 0) to set as many components of Aµ⌫ to zero as possible: the remaining
components (which we cannot transform away via an allowable coordinate transformation) will then plausibly
reflect a wave that is physical. But this method has always left me a bit uncomfortable. Are we absolutely
certain that the remaining components represent a physical wave, or just a wavy coordinate system that we
cannot erase for some reason with our choice of gauge conditions?

So I am going to present a di↵erent method, which has some advantages both in the simplicity of the
math and the clarity of its implications (and leave the other approach to a problem). The one true way to tell
whether you have a physical gravitational wave or just a wavy coordinate system is to look at the Riemann
tensor. According to a chart that we constructed a few days ago, we have 21 potentially independent Riemann
tensor components (updated for our particular coordinate system):
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The Transverse-Traceless Gauge:
How can we tell what is real?
Real waves curve spacetime, and are thus revealed by the Riemann tensor
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The Transverse-Traceless Gauge:
How can we tell what is real?
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we see that (like electromagnetic waves) gravitational waves in a vacuum are dispersionless and move with
the maximum speed allowed by special relativity.
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components (which we cannot transform away via an allowable coordinate transformation) will then plausibly
reflect a wave that is physical. But this method has always left me a bit uncomfortable. Are we absolutely
certain that the remaining components represent a physical wave, or just a wavy coordinate system that we
cannot erase for some reason with our choice of gauge conditions?

So I am going to present a di↵erent method, which has some advantages both in the simplicity of the
math and the clarity of its implications (and leave the other approach to a problem). The one true way to tell
whether you have a physical gravitational wave or just a wavy coordinate system is to look at the Riemann
tensor. According to a chart that we constructed a few days ago, we have 21 potentially independent Riemann
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This one is identically zero because we need at least two t and/or z indices for at least one pair of k’s to
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which again tells us that the gravitational wave is real when A
xy

6= 0.
In a similar way, you can easily analyze the remaining eight terms yourself:

R
tyty

6= 0 when A
xx

�A
yy

6= 0 (5.23a)

R
tyxz

6= 0 when A
yx

= A
xy

6= 0 (5.23b)

R
tyyz

6= 0 when A
xx

�A
yy

6= 0 (5.23c)

R
tztz

= 0 independent of A
tz

= A
zt

= A
tt

= A
zz

(5.23d)

R
tzxy

= 0 identically (5.23e)

R
xzxz

6= 0 when A
xx

�A
yy

6= 0 (5.23f)

R
xzyz

6= 0 when A
yx

= A
xy

(5.23g)

R
yzyz

6= 0 when A
xx

�A
yy

6= 0 (5.23h)

3

with phase speed v = !/k. The Einstein equation, the Lorenz gauge condition, and the symmetry of Hµ⌫

(which follows from the symmetry of h
µ⌫

) imply that

Einstein equation: ) k↵k
↵

= 0 (5.6)

Lorenz gauge: ) k
µ

Aµ⌫ = 0 (5.7)

Symmetry: ) Aµ⌫ = A⌫µ (5.8)

The first equation implies that the wave moves with phase speed v = 1:

0 = k↵k
↵

= ⌘↵�k
↵

k
�

= ⌘tt(�!)2 + ⌘xx(k
x

)2 + ⌘yy(k
y

)2 + ⌘zz(k
z

)2

) 0 = �!2 + k2 ) ! = k ) v =
!

k
= 1 (5.9)

Indeed, the fact that we must have ! = k means that the waves’ group velocityv
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= d!/dk = 1 as well. So
we see that (like electromagnetic waves) gravitational waves in a vacuum are dispersionless and move with
the maximum speed allowed by special relativity.

However, just because we have a plane wave solution to the weak-field Einstein equation in empty space
does not necessarily mean that we have an actual gravitational wave. In this case, a wavy metric perturbation
may describe a physical wavelike distortion of spacetime, but it may just as easily describe a wavy coordinate
system on top of a flat spacetime. How can we tell which is which?

There are several ways to do this. One common method is to use our additional gauge freedom (coordinate
transformations that satisfy ⇤2⇠↵ = 0) to set as many components of Aµ⌫ to zero as possible: the remaining
components (which we cannot transform away via an allowable coordinate transformation) will then plausibly
reflect a wave that is physical. But this method has always left me a bit uncomfortable. Are we absolutely
certain that the remaining components represent a physical wave, or just a wavy coordinate system that we
cannot erase for some reason with our choice of gauge conditions?

So I am going to present a di↵erent method, which has some advantages both in the simplicity of the
math and the clarity of its implications (and leave the other approach to a problem). The one true way to tell
whether you have a physical gravitational wave or just a wavy coordinate system is to look at the Riemann
tensor. According to a chart that we constructed a few days ago, we have 21 potentially independent Riemann
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This one is identically zero because we need at least two t and/or z indices for at least one pair of k’s to
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which again tells us that the gravitational wave is real when A
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because the Lorenz condition requires that Axt = Axz, so A
xt

= �A
xz

, meaning that this term is identically
zero, no matter what Axt is. Similarly, R

tytz

= 0 no matter what Ayt is. Now let’s look at
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x� = 0 (5.21)

This one is identically zero because we need at least two t and/or z indices for at least one pair of k’s to
be nonzero. The same reasoning also eliminates R

tyxy

, R
xyxy

, R
xyxz

, and R
xyyz

. Let’s finish the first row of
equation 5.10 by evaluating
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which again tells us that the gravitational wave is real when A
xy

6= 0.
In a similar way, you can easily analyze the remaining eight terms yourself:

R
tyty

6= 0 when A
xx

�A
yy

6= 0 (5.23a)

R
tyxz

6= 0 when A
yx

= A
xy

6= 0 (5.23b)

R
tyyz

6= 0 when A
xx

�A
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6= 0 (5.23c)

R
tztz

= 0 independent of A
tz

= A
zt

= A
tt

= A
zz

(5.23d)

R
tzxy

= 0 identically (5.23e)
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xzxz
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xx
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6= 0 (5.23f)

R
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6= 0 when A
yx

= A
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(5.23g)

R
yzyz

6= 0 when A
xx

�A
yy

6= 0 (5.23h)
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The Transverse-Traceless Gauge:
How can we tell what is real?

We are now ready to evaluate components of the Riemann tensor, which in this weak-field limit is
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Now let’s start calculating components of this tensor. For example:
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This term will be nonzero (indicating a physically curved spacetime, and thus a real gravitational wave) if
and only if A

xx

�A
yy

is nonzero. Now let’s look at
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So this term will be nonzero if and only if A
xy

is nonzero. Similarly,
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x� = 0 (5.20)

because the Lorenz condition requires that Axt = Axz, so A
xt

= �A
xz

, meaning that this term is identically
zero, no matter what Axt is. Similarly, R

tytz

= 0 no matter what Ayt is. Now let’s look at
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This one is identically zero because we need at least two t and/or z indices for at least one pair of k’s to be
nonzero. The same reasoning also eliminates R

tyxy

, R
xyxy

, R
xyxz

, and R
xyyz

. Finally, consider
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which again tells us that the gravitational wave is real when A
xy

6= 0.
In a similar way, you can easily analyze the remaining terms yourself. Here is a complete list of the 21

Riemann tensor terms:

µ⌫ ! tx ty tz xy xz yz
↵� # tx R
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txty
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(5.23)

where a ⌘ 1
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2(A
xx

�A
yy

) sin k
�

x� and b ⌘ 1
2!

2A
xy

sin k
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x�. You can also see that the symmetry condition
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tzxy
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imposes no additional constraints.
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The entire list of Riemann components

We are now ready to evaluate components of the Riemann tensor, which in this weak-field limit is
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Now let’s start calculating components of this tensor. For example:
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This term will be nonzero (indicating a physically curved spacetime, and thus a real gravitational wave) if
and only if A

xx

�A
yy

is nonzero. Now let’s look at
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So this term will be nonzero if and only if A
xy

is nonzero. Similarly,
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x� = 0 (5.20)

because the Lorenz condition requires that Axt = Axz, so A
xt

= �A
xz

, meaning that this term is identically
zero, no matter what Axt is. Similarly, R

tytz

= 0 no matter what Ayt is. Now let’s look at

R
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This one is identically zero because we need at least two t and/or z indices for at least one pair of k’s to be
nonzero. The same reasoning also eliminates R

tyxy

, R
xyxy

, R
xyxz

, and R
xyyz

. Finally, consider
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which again tells us that the gravitational wave is real when A
xy

6= 0.
In a similar way, you can easily analyze the remaining terms yourself. Here is a complete list of the 21

Riemann tensor terms:

µ⌫ ! tx ty tz xy xz yz
↵� # tx R

txtx

= a R
txty

= b R
txtz

= 0 R
txxy

= 0 R
txxz

= a R
txyz

= b
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= 0 R
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= 0 R
tyxz

= b R
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where a ⌘ 1
4!

2(A
xx

�A
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) sin k
�

x� and b ⌘ 1
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2A
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sin k
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x�. You can also see that the symmetry condition
0 = R
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imposes no additional constraints.

3

(Note that Rtxyz + Rtzxy + Rtyzx = Rtxyz + Rtzxy – Rtyxz = 0.)



The Transverse-Traceless Gauge:
How can we tell what is real?
The only values that matter:                       and   

We are now ready to evaluate components of the Riemann tensor, which in this weak-field limit is
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Now let’s start calculating components of this tensor. For example:
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This term will be nonzero (indicating a physically curved spacetime, and thus a real gravitational wave) if
and only if A

xx

�A
yy

is nonzero. Now let’s look at

R
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So this term will be nonzero if and only if A
xy

is nonzero. Similarly,

R
txtz

= � 1
2 (kxkt[Atz

� 1
2⌘tzA] + k

t

k
z

[A
xt

� 1
2⌘xtA]

� k
t

k
t

[A
xz

� 1
2⌘xzA]� k

x

k
z

[A
tt

� 1
2⌘ttA]) sin k

�

x�

= � 1
2 (0� !2A

xt

� !2A
xz

� 0) sin k
�

x�

= + 1
2!

2(A
xt

+A
xz

) sin k
�

x� = 0 (5.20)

because the Lorenz condition requires that Axt = Axz, so A
xt

= �A
xz

, meaning that this term is identically
zero, no matter what Axt is. Similarly, R
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= 0 no matter what Ayt is. Now let’s look at
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This one is identically zero because we need at least two t and/or z indices for at least one pair of k’s to
be nonzero. The same reasoning also eliminates R

tyxy

, R
xyxy

, R
xyxz

, and R
xyyz

. Let’s finish the first row of
equation 5.10 by evaluating
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which again tells us that the gravitational wave is real when A
xy

6= 0.
In a similar way, you can easily analyze the remaining eight terms yourself:

R
tyty

6= 0 when A
xx

�A
yy

6= 0 (5.23a)

R
tyxz

6= 0 when A
yx

= A
xy

6= 0 (5.23b)

R
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6= 0 when A
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6= 0 (5.23c)

R
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= 0 independent of A
tz
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zt
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tt
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zz

(5.23d)
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= 0 identically (5.23e)
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(5.23g)

R
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xx
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6= 0 (5.23h)
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We call the gauge where waves in the +z direction have the form

We are now ready to evaluate components of the Riemann tensor, which in this weak-field limit is
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Now let’s start calculating components of this tensor. For example:
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This term will be nonzero (indicating a physically curved spacetime, and thus a real gravitational wave) if
and only if A

xx
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yy

is nonzero. Now let’s look at
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So this term will be nonzero if and only if A
xy

is nonzero. Similarly,
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because the Lorenz condition requires that Axt = Axz, so A
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, meaning that this term is identically
zero, no matter what Axt is. Similarly, R

tytz

= 0 no matter what Ayt is. Now let’s look at

R
txxy

= � 1
2 (kxkx[Aty

� 1
2⌘tyA] + k

t

k
y

[A
xx

� 1
2⌘xxA]

� k
t

k
x

[A
xy

� 1
2⌘xyA]� k

x

k
y

[A
tx

� 1
2⌘txA]) sin k

�

x�

= � 1
2 (0 + 0� 0� 0) sin k

�

x� = 0 (5.21)

This one is identically zero because we need at least two t and/or z indices for at least one pair of k’s to
be nonzero. The same reasoning also eliminates R
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equation 5.10 by evaluating
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which again tells us that the gravitational wave is real when A
xy

6= 0.
In a similar way, you can easily analyze the remaining eight terms yourself:
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We therefore ought to be able to do a coordinate transformation to
erase all         and         and also make the matrix traceless:    Atμ Azμ

You can also show that the symmetry condition 0 = R
txyz

+R
tzxy

+R
tyzx

imposes no additional constraints.
The point of this is that for a wave moving in the z direction, the only parts of Aµ⌫ that actually matter

physically are two values: the value of Axx �Ayy and the value of Axy = Ayx. All of the other components
have no physical consequences, meaning that we should be able to find a coordinate transformation that sets
them to zero. Also, since only the di↵erence between Axx and Ayy matters, we should be able to go to a
coordinate system where we subtract the remaining trace A = Axx+Ayy of the metric from each component:
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the transverse traceless gauge for that wave (because the only nonzero spatial components are transverse
to the wave’s direction of motion and the matrix also has zero trace). We see that the general physically
relevant wave is a linear combination (with small but otherwise arbitrary values of the coe�cents A+ and
A⇥) of two independent types of waves, which we call polarizations of the gravitational wave (in analogy
to the two linear polarizations of electromagentic waves). We call these polarization states “upright” and
“diagonal,” or “plus” and “cross” (for reasons that will become clear shortly).

Note also that in transverse-traceless gauge, there is no distinction between Hµ⌫ and hµ⌫ :
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This is one of the reasons it is convenient to set the trace to zero.
To determine the physical e↵ects of the wave, consider a particle at rest (ux = uy = uz = 0). The

geodesic equation becomes

d2x↵

d⌧2
= ��↵

µ⌫

uµu⌫ = ��↵

tt

utut = � 1
2⌘

↵�(@
t

hTT

t�

+ @
t

hTT

�t

� @
�

hTT

tt

)utut = 0 ! (5.27)

because the metric perturbation in transverse-traceless gauge has no nonzero components with a t in one or
more index. This looks like it says that the wave has no physical e↵ect on the particle after all! But this is
not what the equation is really saying. Just because the coordinates have the names t, x, y, z does not make
them cartesian coordinates. What the equation is actually saying is that in this case, the coordinates are
simply comoving with a free particle so that the coordinates of that particle remain fixed.

To see that this does not imply that the wave has no e↵ect, we need (as always!) to go back to the metric
to see what our physical coordinates actually mean. Rather than one particle, consider a set of particles in
the xy plane that (before the wave comes by) are arranged in a ring of radius R that a purely “uprightly”
or “plus” polarized gravitational plane wave (A⇥ = 0) moves in the +z direction through this ring. The
displacements �x = R cos ✓ and �y = R sin ✓ will be fixed in the transverse-traceless gauge, as we have seen.
But their distances �s from the center at a given instant of time t (�t = 0 from the center) on the xy plane
(�z = 0) are not fixed: according to the metric equation, we have
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) �s = R(1 +A+ cos 2✓)1/2 cos!t ⇡ R(1 + 1
2A+ cos 2✓) cos!t (5.28)

where in the last step I have used the binomial approximation, since A+ ⌧ 1. Similarly, you can show that
for a “diagonally” or “cross” polarized wave, we have

�s ⇡ R(1 + 1
2A⇥ sin 2✓) cos!t (5.29)
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The point of this is that for a wave moving in the z direction, the only parts of Aµ⌫ that actually matter

physically are two values: the value of Axx �Ayy and the value of Axy = Ayx. All of the other components
have no physical consequences, meaning that we should be able to find a coordinate transformation that sets
them to zero. Also, since only the di↵erence between Axx and Ayy matters, we should be able to go to a
coordinate system where we subtract the remaining trace A = Axx+Ayy of the metric from each component:
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the transverse traceless gauge for that wave (because the only nonzero spatial components are transverse
to the wave’s direction of motion and the matrix also has zero trace). We see that the general physically
relevant wave is a linear combination (with small but otherwise arbitrary values of the coe�cents A+ and
A⇥) of two independent types of waves, which we call polarizations of the gravitational wave (in analogy
to the two linear polarizations of electromagentic waves). We call these polarization states “upright” and
“diagonal,” or “plus” and “cross” (for reasons that will become clear shortly).

Note also that in transverse-traceless gauge, there is no distinction between Hµ⌫ and hµ⌫ :
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This is one of the reasons it is convenient to set the trace to zero.
To determine the physical e↵ects of the wave, consider a particle at rest (ux = uy = uz = 0). The

geodesic equation becomes
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because the metric perturbation in transverse-traceless gauge has no nonzero components with a t in one or
more index. This looks like it says that the wave has no physical e↵ect on the particle after all! But this is
not what the equation is really saying. Just because the coordinates have the names t, x, y, z does not make
them cartesian coordinates. What the equation is actually saying is that in this case, the coordinates are
simply comoving with a free particle so that the coordinates of that particle remain fixed.

To see that this does not imply that the wave has no e↵ect, we need (as always!) to go back to the metric
to see what our physical coordinates actually mean. Rather than one particle, consider a set of particles in
the xy plane that (before the wave comes by) are arranged in a ring of radius R that a purely “uprightly”
or “plus” polarized gravitational plane wave (A⇥ = 0) moves in the +z direction through this ring. The
displacements �x = R cos ✓ and �y = R sin ✓ will be fixed in the transverse-traceless gauge, as we have seen.
But their distances �s from the center at a given instant of time t (�t = 0 from the center) on the xy plane
(�z = 0) are not fixed: according to the metric equation, we have

�s2 = (⌘
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) �s = R(1 +A+ cos 2✓)1/2 cos!t ⇡ R(1 + 1
2A+ cos 2✓) cos!t (5.28)

where in the last step I have used the binomial approximation, since A+ ⌧ 1. Similarly, you can show that
for a “diagonally” or “cross” polarized wave, we have

�s ⇡ R(1 + 1
2A⇥ sin 2✓) cos!t (5.29)
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You can also show that the symmetry condition 0 = R
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imposes no additional constraints.
The point of this is that for a wave moving in the z direction, the only parts of Aµ⌫ that actually matter

physically are two values: the value of Axx �Ayy and the value of Axy = Ayx. All of the other components
have no physical consequences, meaning that we should be able to find a coordinate transformation that sets
them to zero. Also, since only the di↵erence between Axx and Ayy matters, we should be able to go to a
coordinate system where we subtract the remaining trace A = Axx+Ayy of the metric from each component:
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the transverse traceless gauge for that wave (because the only nonzero spatial components are transverse
to the wave’s direction of motion and the matrix also has zero trace). We see that the general physically
relevant wave is a linear combination (with small but otherwise arbitrary values of the coe�cents A+ and
A⇥) of two independent types of waves, which we call polarizations of the gravitational wave (in analogy
to the two linear polarizations of electromagentic waves). We call these polarization states “upright” and
“diagonal,” or “plus” and “cross” (for reasons that will become clear shortly).

Note also that in transverse-traceless gauge, there is no distinction between Hµ⌫ and hµ⌫ :
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This is one of the reasons it is convenient to set the trace to zero.
To determine the physical e↵ects of the wave, consider a particle at rest (ux = uy = uz = 0). The

geodesic equation becomes
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because the metric perturbation in transverse-traceless gauge has no nonzero components with a t in one or
more index. This looks like it says that the wave has no physical e↵ect on the particle after all! But this is
not what the equation is really saying. Just because the coordinates have the names t, x, y, z does not make
them cartesian coordinates. What the equation is actually saying is that in this case, the coordinates are
simply comoving with a free particle so that the coordinates of that particle remain fixed.

To see that this does not imply that the wave has no e↵ect, we need (as always!) to go back to the metric
to see what our physical coordinates actually mean. Rather than one particle, consider a set of particles in
the xy plane that (before the wave comes by) are arranged in a ring of radius R that a purely “uprightly”
or “plus” polarized gravitational plane wave (A⇥ = 0) moves in the +z direction through this ring. The
displacements �x = R cos ✓ and �y = R sin ✓ will be fixed in the transverse-traceless gauge, as we have seen.
But their distances �s from the center at a given instant of time t (�t = 0 from the center) on the xy plane
(�z = 0) are not fixed: according to the metric equation, we have
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) �s = R(1 +A+ cos 2✓)1/2 cos!t ⇡ R(1 + 1
2A+ cos 2✓) cos!t (5.28)

where in the last step I have used the binomial approximation, since A+ ⌧ 1. Similarly, you can show that
for a “diagonally” or “cross” polarized wave, we have

�s ⇡ R(1 + 1
2A⇥ sin 2✓) cos!t (5.29)
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The Transverse-Traceless Gauge:
Physical effects of the wave
The geodesic equation:

You can also show that the symmetry condition 0 = R
txyz

+R
tzxy

+R
tyzx

imposes no additional constraints.
The point of this is that for a wave moving in the z direction, the only parts of Aµ⌫ that actually matter

physically are two values: the value of Axx �Ayy and the value of Axy = Ayx. All of the other components
have no physical consequences, meaning that we should be able to find a coordinate transformation that sets
them to zero. Also, since only the di↵erence between Axx and Ayy matters, we should be able to go to a
coordinate system where we subtract the remaining trace A = Axx+Ayy of the metric from each component:
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2 (A
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the transverse traceless gauge for that wave (because the only nonzero spatial components are transverse
to the wave’s direction of motion and the matrix also has zero trace). We see that the general physically
relevant wave is a linear combination (with small but otherwise arbitrary values of the coe�cents A+ and
A⇥) of two independent types of waves, which we call polarizations of the gravitational wave (in analogy
to the two linear polarizations of electromagentic waves). We call these polarization states “upright” and
“diagonal,” or “plus” and “cross” (for reasons that will become clear shortly).

Note also that in transverse-traceless gauge, there is no distinction between Hµ⌫ and hµ⌫ :
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This is one of the reasons it is convenient to set the trace to zero.
To determine the physical e↵ects of the wave, consider a particle at rest (ux = uy = uz = 0). The

geodesic equation becomes
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because the metric perturbation in transverse-traceless gauge has no nonzero components with a t in one or
more index. This looks like it says that the wave has no physical e↵ect on the particle after all! But this is
not what the equation is really saying. Just because the coordinates have the names t, x, y, z does not make
them cartesian coordinates. What the equation is actually saying is that in this case, the coordinates are
simply comoving with a free particle so that the coordinates of that particle remain fixed.

To see that this does not imply that the wave has no e↵ect, we need (as always!) to go back to the metric
to see what our physical coordinates actually mean. Rather than one particle, consider a set of particles in
the xy plane that (before the wave comes by) are arranged in a ring of radius R that a purely “uprightly”
or “plus” polarized gravitational plane wave (A⇥ = 0) moves in the +z direction through this ring. The
displacements �x = R cos ✓ and �y = R sin ✓ will be fixed in the transverse-traceless gauge, as we have seen.
But their distances �s from the center at a given instant of time t (�t = 0 from the center) on the xy plane
(�z = 0) are not fixed: according to the metric equation, we have
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2A+ cos 2✓) cos!t (5.28)

where in the last step I have used the binomial approximation, since A+ ⌧ 1. Similarly, you can show that
for a “diagonally” or “cross” polarized wave, we have

�s ⇡ R(1 + 1
2A⇥ sin 2✓) cos!t (5.29)
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Uh oh. Do the waves really have no physical effect?



The Transverse-Traceless Gauge:
Physical effects of the wave
We have to check the metric!  Consider a plus-polarized wave moving
through a ring of floating particles such that                             : 
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The point of this is that for a wave moving in the z direction, the only parts of Aµ⌫ that actually matter

physically are two values: the value of Axx �Ayy and the value of Axy = Ayx. All of the other components
have no physical consequences, meaning that we should be able to find a coordinate transformation that sets
them to zero. Also, since only the di↵erence between Axx and Ayy matters, we should be able to go to a
coordinate system where we subtract the remaining trace A = Axx+Ayy of the metric from each component:
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the transverse traceless gauge for that wave (because the only nonzero spatial components are transverse
to the wave’s direction of motion and the matrix also has zero trace). We see that the general physically
relevant wave is a linear combination (with small but otherwise arbitrary values of the coe�cents A+ and
A⇥) of two independent types of waves, which we call polarizations of the gravitational wave (in analogy
to the two linear polarizations of electromagentic waves). We call these polarization states “upright” and
“diagonal,” or “plus” and “cross” (for reasons that will become clear shortly).

Note also that in transverse-traceless gauge, there is no distinction between Hµ⌫ and hµ⌫ :
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This is one of the reasons it is convenient to set the trace to zero.
To determine the physical e↵ects of the wave, consider a particle at rest (ux = uy = uz = 0). The

geodesic equation becomes

d2x↵

d⌧2
= ��↵

µ⌫

uµu⌫ = ��↵

tt

utut = � 1
2⌘

↵�(@
t

hTT

t�

+ @
t

hTT

�t

� @
�

hTT

tt

)utut = 0 ! (5.27)

because the metric perturbation in transverse-traceless gauge has no nonzero components with a t in one or
more index. This looks like it says that the wave has no physical e↵ect on the particle after all! But this is
not what the equation is really saying. Just because the coordinates have the names t, x, y, z does not make
them cartesian coordinates. What the equation is actually saying is that in this case, the coordinates are
simply comoving with a free particle so that the coordinates of that particle remain fixed.

To see that this does not imply that the wave has no e↵ect, we need (as always!) to go back to the metric
to see what our physical coordinates actually mean. Rather than one particle, consider a set of particles in
the xy plane that (before the wave comes by) are arranged in a ring of radius R that a purely “uprightly”
or “plus” polarized gravitational plane wave (A⇥ = 0) moves in the +z direction through this ring. The
displacements �x = R cos ✓ and �y = R sin ✓ will be fixed in the transverse-traceless gauge, as we have seen.
But their distances �s from the center at a given instant of time t (�t = 0 from the center) on the xy plane
(�z = 0) are not fixed: according to the metric equation, we have
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where in the last step I have used the binomial approximation, since A+ ⌧ 1. Similarly, you can show that
for a “diagonally” or “cross” polarized wave, we have

�s ⇡ R(1 + 1
2A⇥ sin 2✓) cos!t (5.29)
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R2 = Δx2 + Δy2

Similarly, for a cross-polarized wave:

You can also show that the symmetry condition 0 = R
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imposes no additional constraints.
The point of this is that for a wave moving in the z direction, the only parts of Aµ⌫ that actually matter

physically are two values: the value of Axx �Ayy and the value of Axy = Ayx. All of the other components
have no physical consequences, meaning that we should be able to find a coordinate transformation that sets
them to zero. Also, since only the di↵erence between Axx and Ayy matters, we should be able to go to a
coordinate system where we subtract the remaining trace A = Axx+Ayy of the metric from each component:
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the transverse traceless gauge for that wave (because the only nonzero spatial components are transverse
to the wave’s direction of motion and the matrix also has zero trace). We see that the general physically
relevant wave is a linear combination (with small but otherwise arbitrary values of the coe�cents A+ and
A⇥) of two independent types of waves, which we call polarizations of the gravitational wave (in analogy
to the two linear polarizations of electromagentic waves). We call these polarization states “upright” and
“diagonal,” or “plus” and “cross” (for reasons that will become clear shortly).

Note also that in transverse-traceless gauge, there is no distinction between Hµ⌫ and hµ⌫ :
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This is one of the reasons it is convenient to set the trace to zero.
To determine the physical e↵ects of the wave, consider a particle at rest (ux = uy = uz = 0). The

geodesic equation becomes
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because the metric perturbation in transverse-traceless gauge has no nonzero components with a t in one or
more index. This looks like it says that the wave has no physical e↵ect on the particle after all! But this is
not what the equation is really saying. Just because the coordinates have the names t, x, y, z does not make
them cartesian coordinates. What the equation is actually saying is that in this case, the coordinates are
simply comoving with a free particle so that the coordinates of that particle remain fixed.

To see that this does not imply that the wave has no e↵ect, we need (as always!) to go back to the metric
to see what our physical coordinates actually mean. Rather than one particle, consider a set of particles in
the xy plane that (before the wave comes by) are arranged in a ring of radius R that a purely “uprightly”
or “plus” polarized gravitational plane wave (A⇥ = 0) moves in the +z direction through this ring. The
displacements �x = R cos ✓ and �y = R sin ✓ will be fixed in the transverse-traceless gauge, as we have seen.
But their distances �s from the center at a given instant of time t (�t = 0 from the center) on the xy plane
(�z = 0) are not fixed: according to the metric equation, we have

�s2 = (⌘
xx

+ hTT

xx

)�x2 + (⌘
yy

+ hTT

yy

)�x2

= (1 +A+)R
2 cos2 ✓ cos2 !t+ (1�A+)R
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) �s = R(1 +A+ cos 2✓)1/2 cos!t ⇡ R(1 + 1
2A+ cos 2✓) cos!t (5.28)

where in the last step I have used the binomial approximation, since A+ ⌧ 1. Similarly, you can show that
for a “diagonally” or “cross” polarized wave, we have

�s ⇡ R(1 + 1
2A⇥ sin 2✓) cos!t (5.29)

4



The Transverse-Traceless Gauge:
Physical effects of the wave

R

Y

X

R

Y

X

R

Y

X

R

Y

X

t 0~ =

t 0~ =

t~ r=

t~ r=

i

i

i

i

Upright (plus)
polarization:

Diagonal (cross)
polarization:

You can also show that the symmetry condition 0 = R
txyz

+R
tzxy

+R
tyzx

imposes no additional constraints.
The point of this is that for a wave moving in the z direction, the only parts of Aµ⌫ that actually matter

physically are two values: the value of Axx �Ayy and the value of Axy = Ayx. All of the other components
have no physical consequences, meaning that we should be able to find a coordinate transformation that sets
them to zero. Also, since only the di↵erence between Axx and Ayy matters, we should be able to go to a
coordinate system where we subtract the remaining trace A = Axx+Ayy of the metric from each component:
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2A = Axx � 1

2 (A
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2 (A
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= 0) without a↵ecting the di↵erence between these components:
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the transverse traceless gauge for that wave (because the only nonzero spatial components are transverse
to the wave’s direction of motion and the matrix also has zero trace). We see that the general physically
relevant wave is a linear combination (with small but otherwise arbitrary values of the coe�cents A+ and
A⇥) of two independent types of waves, which we call polarizations of the gravitational wave (in analogy
to the two linear polarizations of electromagentic waves). We call these polarization states “upright” and
“diagonal,” or “plus” and “cross” (for reasons that will become clear shortly).

Note also that in transverse-traceless gauge, there is no distinction between Hµ⌫ and hµ⌫ :
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This is one of the reasons it is convenient to set the trace to zero.
To determine the physical e↵ects of the wave, consider a particle at rest (ux = uy = uz = 0). The

geodesic equation becomes
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because the metric perturbation in transverse-traceless gauge has no nonzero components with a t in one or
more index. This looks like it says that the wave has no physical e↵ect on the particle after all! But this is
not what the equation is really saying. Just because the coordinates have the names t, x, y, z does not make
them cartesian coordinates. What the equation is actually saying is that in this case, the coordinates are
simply comoving with a free particle so that the coordinates of that particle remain fixed.

To see that this does not imply that the wave has no e↵ect, we need (as always!) to go back to the metric
to see what our physical coordinates actually mean. Rather than one particle, consider a set of particles in
the xy plane that (before the wave comes by) are arranged in a ring of radius R that a purely “uprightly”
or “plus” polarized gravitational plane wave (A⇥ = 0) moves in the +z direction through this ring. The
displacements �x = R cos ✓ and �y = R sin ✓ will be fixed in the transverse-traceless gauge, as we have seen.
But their distances �s from the center at a given instant of time t (�t = 0 from the center) on the xy plane
(�z = 0) are not fixed: according to the metric equation, we have

�s2 = (⌘
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) �s = R(1 +A+ cos 2✓)1/2 cos!t ⇡ R(1 + 1
2A+ cos 2✓) cos!t (5.28)

where in the last step I have used the binomial approximation, since A+ ⌧ 1. Similarly, you can show that
for a “diagonally” or “cross” polarized wave, we have

�s ⇡ R(1 + 1
2A⇥ sin 2✓) cos!t (5.29)
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the transverse traceless gauge for that wave (because the only nonzero spatial components are transverse
to the wave’s direction of motion and the matrix also has zero trace). We see that the general physically
relevant wave is a linear combination (with small but otherwise arbitrary values of the coe�cents A+ and
A⇥) of two independent types of waves, which we call polarizations of the gravitational wave (in analogy
to the two linear polarizations of electromagentic waves). We call these polarization states “upright” and
“diagonal,” or “plus” and “cross” (for reasons that will become clear shortly).

Note also that in transverse-traceless gauge, there is no distinction between Hµ⌫ and hµ⌫ :
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This is one of the reasons it is convenient to set the trace to zero.
To determine the physical e↵ects of the wave, consider a particle at rest (ux = uy = uz = 0). The
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because the metric perturbation in transverse-traceless gauge has no nonzero components with a t in one or
more index. This looks like it says that the wave has no physical e↵ect on the particle after all! But this is
not what the equation is really saying. Just because the coordinates have the names t, x, y, z does not make
them cartesian coordinates. What the equation is actually saying is that in this case, the coordinates are
simply comoving with a free particle so that the coordinates of that particle remain fixed.

To see that this does not imply that the wave has no e↵ect, we need (as always!) to go back to the metric
to see what our physical coordinates actually mean. Rather than one particle, consider a set of particles in
the xy plane that (before the wave comes by) are arranged in a ring of radius R that a purely “uprightly”
or “plus” polarized gravitational plane wave (A⇥ = 0) moves in the +z direction through this ring. The
displacements �x = R cos ✓ and �y = R sin ✓ will be fixed in the transverse-traceless gauge, as we have seen.
But their distances �s from the center at a given instant of time t (�t = 0 from the center) on the xy plane
(�z = 0) are not fixed: according to the metric equation, we have
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) �s = R(1 +A+ cos 2✓)1/2 cos!t ⇡ R(1 + 1
2A+ cos 2✓) cos!t (5.28)

where in the last step I have used the binomial approximation, since A+ ⌧ 1. Similarly, you can show that
for a “diagonally” or “cross” polarized wave, we have

�s ⇡ R(1 + 1
2A⇥ sin 2✓) cos!t (5.29)
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the transverse traceless gauge for that wave (because the only nonzero spatial components are transverse
to the wave’s direction of motion and the matrix also has zero trace). We see that the general physically
relevant wave is a linear combination (with small but otherwise arbitrary values of the coe�cents A+ and
A⇥) of two independent types of waves, which we call polarizations of the gravitational wave (in analogy
to the two linear polarizations of electromagentic waves). We call these polarization states “upright” and
“diagonal,” or “plus” and “cross” (for reasons that will become clear shortly).

Note also that in transverse-traceless gauge, there is no distinction between Hµ⌫ and hµ⌫ :
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This is one of the reasons it is convenient to set the trace to zero.
To determine the physical e↵ects of the wave, consider a particle at rest (ux = uy = uz = 0). The
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because the metric perturbation in transverse-traceless gauge has no nonzero components with a t in one or
more index. This looks like it says that the wave has no physical e↵ect on the particle after all! But this is
not what the equation is really saying. Just because the coordinates have the names t, x, y, z does not make
them cartesian coordinates. What the equation is actually saying is that in this case, the coordinates are
simply comoving with a free particle so that the coordinates of that particle remain fixed.

To see that this does not imply that the wave has no e↵ect, we need (as always!) to go back to the metric
to see what our physical coordinates actually mean. Rather than one particle, consider a set of particles in
the xy plane that (before the wave comes by) are arranged in a ring of radius R that a purely “uprightly”
or “plus” polarized gravitational plane wave (A⇥ = 0) moves in the +z direction through this ring. The
displacements �x = R cos ✓ and �y = R sin ✓ will be fixed in the transverse-traceless gauge, as we have seen.
But their distances �s from the center at a given instant of time t (�t = 0 from the center) on the xy plane
(�z = 0) are not fixed: according to the metric equation, we have
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where in the last step I have used the binomial approximation, since A+ ⌧ 1. Similarly, you can show that
for a “diagonally” or “cross” polarized wave, we have

�s ⇡ R(1 + 1
2A⇥ sin 2✓) cos!t (5.29)
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Generating Gravitational Waves:
Rough estimates
Waves at source will (at worst) have metric perturbations ~ 1 at the 
source’s surface.  Amplitude falls off as 1/r.

First LIGO source:  ~ 60 solar masses ≈ 105 m.  Observed amplitude was
10–21, so distance must have been about 1026 m = 1010 ly. Actual estimate
was 1.3 Gy.

Sun as black hole eaten by another black hole:  GM ≈ 3000 m. Amplitude 
of wave at earth ~ 1/(1.5 × 1011/3000) ≈ 2 × 10–8.



Generating Gravitational Waves:
“Small-weak-slow” approximation
1. The source is small compared to both the wave’s wavelength and the 

distance to the observer.

2. The source is weak in that                      even at the source.

3. The source is slow in that parts of the source move with speeds v << 1.

|hμν | ≪ 1

“Weak” means that we can use the weak-field Einstein equation:

simple binary star systems are known and steady sources of gravitational waves, and one can make realistic
analytical calculations for the waves emitted by such sources. In what follows, I will describe how to calculate
the gravitational waves emitted by a system with two or more moving parts using the small-slow-weak
approximation, where we assume that

1. The source is small compared to both the wave’s wavelength and the distance to the observer.

2. The source is weak in that |h
µ⌫

| ⌧ 1 even very near the source. (This will be reasonable for most
astrophysical sources of gravitational waves except for coalescing black holes or neutron stars.)

3. The source is slow in that parts of the source move with speeds v ⌧ 1. (This again will be true for
most astrophysical sources other than coalescing black holes or neutron stars.)

Let’s see how these approximations can help. The weak-field limitation allows us to us the weak-field
Einstein equation even to describe the source. We seek to solve

⇤2Hµ⌫ = �16⇡GTµ⌫ subject to the Lorenz condition @
µ

Hµ⌫ = 0 (5.30)

We saw in the last session that solutions to this equation are (by analogy to solutions of the corresponding
electrostatic equation ⇤2� = �4⇡k⇢) are

Hµ⌫(t, ~R) = 4G

Z

src

Tµ⌫(t� s,~r ) dV

s
where s ⌘ |~R� ~r | (5.31)

and the integral is a volume integral over positions ~r in the source. Now, if the source is also small compared
to R ⌘ |~R|, then s ⇡ R. If the source is also small compared to a wavelength of the wave, then the retarded
time t� s ⇡ t�R for all points on the source. In this case, the solution becomes the simpler function

Hµ⌫(t, ~R) =


4G

R

Z

src
Tµ⌫ dV

�

at t�R

(5.32)

From now on, let’s assume that all integrals over the source are calculated at the retarded time t � R (so
that we don’t have to write this over and over).

I am now going to give you an overview of where we are going so that you do not get distracted by the
mathematics required to get there. We will see that if the source’s center of mass is at rest in our coordinate
system, then Htt = 4GM/R = constant, and Hti = Hit = 0 (where, again, I am using the convention that
Latin-letter indices range only over the spatial component index values). Therefore, the only potentially
“waving” components of the trace-reversed metric perturbation Hµ⌫ are the spatial components Hij . We
will then show that the divergence theorem in conjunction with conservation of energy and momentum in
the source together imply that

Z

src
T ij dV =

1

2

d2

dt2

Z

src
T ttxixj dV =

1

2

d2

dt2

Z

src
⇢xixj dV ⌘ 1

2
Ï ij (5.33)

where I ij ⌘
R
⇢xixj dV is the source’s quadrupole moment tensor (note that it is a tensor only with

regard to rotations and displacements of the spatial coordinates). It turns out to be useful (for a number of
reasons) to use expressions involving the traceless reduced quadrupole moment tensor

�I ij ⌘
Z

src
⇢(xixj � 1

3⌘
ijr2) dV where r2 ⌘ x2 + y2 + z2 (5.34)

instead. This matrix is automatically traceless. It is also the tensor that one would use to expand the
Newtonian gravitational potential � at some large distance R from a compact and static but asymmetrical
source whose center of mass is a the origin:

� = �GM

R
� 3�I

ij

2R3

✓
Xi

R

◆✓
Xj

R

◆
+ · · · (5.35)

where Xi is a component of the radius vector ~R from the source to the observer. Therefore, the reduced
quadrupole moment tensor expresses the leading component of the field’s asphericity.
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approximation, where we assume that
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astrophysical sources of gravitational waves except for coalescing black holes or neutron stars.)

3. The source is slow in that parts of the source move with speeds v ⌧ 1. (This again will be true for
most astrophysical sources other than coalescing black holes or neutron stars.)

Let’s see how these approximations can help. The weak-field limitation allows us to us the weak-field
Einstein equation even to describe the source. We seek to solve
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From now on, let’s assume that all integrals over the source are calculated at the retarded time t � R (so
that we don’t have to write this over and over).

I am now going to give you an overview of where we are going so that you do not get distracted by the
mathematics required to get there. We will see that if the source’s center of mass is at rest in our coordinate
system, then Htt = 4GM/R = constant, and Hti = Hit = 0 (where, again, I am using the convention that
Latin-letter indices range only over the spatial component index values). Therefore, the only potentially
“waving” components of the trace-reversed metric perturbation Hµ⌫ are the spatial components Hij . We
will then show that the divergence theorem in conjunction with conservation of energy and momentum in
the source together imply that
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where I ij ⌘
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⇢(xixj � 1

3⌘
ijr2) dV where r2 ⌘ x2 + y2 + z2 (5.34)

instead. This matrix is automatically traceless. It is also the tensor that one would use to expand the
Newtonian gravitational potential � at some large distance R from a compact and static but asymmetrical
source whose center of mass is a the origin:

� = �GM

R
� 3�I

ij

2R3

✓
Xi

R

◆✓
Xj

R

◆
+ · · · (5.35)

where Xi is a component of the radius vector ~R from the source to the observer. Therefore, the reduced
quadrupole moment tensor expresses the leading component of the field’s asphericity.
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Generating Gravitational Waves:
“Small-weak-slow” approximation
“Small” means that R ≈ s, and that the retarded time t – s ≈ t – R:

Overview:    (1)

simple binary star systems are known and steady sources of gravitational waves, and one can make realistic
analytical calculations for the waves emitted by such sources. In what follows, I will describe how to calculate
the gravitational waves emitted by a system with two or more moving parts using the small-slow-weak
approximation, where we assume that

1. The source is small compared to both the wave’s wavelength and the distance to the observer.

2. The source is weak in that |h
µ⌫

| ⌧ 1 even very near the source. (This will be reasonable for most
astrophysical sources of gravitational waves except for coalescing black holes or neutron stars.)

3. The source is slow in that parts of the source move with speeds v ⌧ 1. (This again will be true for
most astrophysical sources other than coalescing black holes or neutron stars.)

Let’s see how these approximations can help. The weak-field limitation allows us to us the weak-field
Einstein equation even to describe the source. We seek to solve

⇤2Hµ⌫ = �16⇡GTµ⌫ subject to the Lorenz condition @
µ

Hµ⌫ = 0 (5.30)

We saw in the last session that solutions to this equation are (by analogy to solutions of the corresponding
electrostatic equation ⇤2� = �4⇡k⇢) are

Hµ⌫(t, ~R) = 4G

Z

src

Tµ⌫(t� s,~r ) dV

s
where s ⌘ |~R� ~r | (5.31)

and the integral is a volume integral over positions ~r in the source. Now, if the source is also small compared
to R ⌘ |~R|, then s ⇡ R. If the source is also small compared to a wavelength of the wave, then the retarded
time t� s ⇡ t�R for all points on the source. In this case, the solution becomes the simpler function

Hµ⌫(t, ~R) =


4G

R

Z

src
Tµ⌫ dV

�

at t�R

(5.32)

From now on, let’s assume that all integrals over the source are calculated at the retarded time t � R (so
that we don’t have to write this over and over).

I am now going to give you an overview of where we are going so that you do not get distracted by the
mathematics required to get there. We will see that if the source’s center of mass is at rest in our coordinate
system, then Htt = 4GM/R = constant, and Hti = Hit = 0 (where, again, I am using the convention that
Latin-letter indices range only over the spatial component index values). Therefore, the only potentially
“waving” components of the trace-reversed metric perturbation Hµ⌫ are the spatial components Hij . We
will then show that the divergence theorem in conjunction with conservation of energy and momentum in
the source together imply that

Z

src
T ij dV =

1

2

d2

dt2

Z

src
T ttxixj dV =

1

2

d2

dt2

Z

src
⇢xixj dV ⌘ 1

2
Ï ij (5.33)

where I ij ⌘
R
⇢xixj dV is the source’s quadrupole moment tensor (note that it is a tensor only with

regard to rotations and displacements of the spatial coordinates). It turns out to be useful (for a number of
reasons) to use expressions involving the traceless reduced quadrupole moment tensor

�I ij ⌘
Z

src
⇢(xixj � 1

3⌘
ijr2) dV where r2 ⌘ x2 + y2 + z2 (5.34)

instead. This matrix is automatically traceless. It is also the tensor that one would use to expand the
Newtonian gravitational potential � at some large distance R from a compact and static but asymmetrical
source whose center of mass is a the origin:

� = �GM

R
� 3�I

ij

2R3

✓
Xi

R

◆✓
Xj

R

◆
+ · · · (5.35)

where Xi is a component of the radius vector ~R from the source to the observer. Therefore, the reduced
quadrupole moment tensor expresses the leading component of the field’s asphericity.
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simple binary star systems are known and steady sources of gravitational waves, and one can make realistic
analytical calculations for the waves emitted by such sources. In what follows, I will describe how to calculate
the gravitational waves emitted by a system with two or more moving parts using the small-slow-weak
approximation, where we assume that

1. The source is small compared to both the wave’s wavelength and the distance to the observer.

2. The source is weak in that |h
µ⌫

| ⌧ 1 even very near the source. (This will be reasonable for most
astrophysical sources of gravitational waves except for coalescing black holes or neutron stars.)

3. The source is slow in that parts of the source move with speeds v ⌧ 1. (This again will be true for
most astrophysical sources other than coalescing black holes or neutron stars.)

Let’s see how these approximations can help. The weak-field limitation allows us to us the weak-field
Einstein equation even to describe the source. We seek to solve

⇤2Hµ⌫ = �16⇡GTµ⌫ subject to the Lorenz condition @
µ

Hµ⌫ = 0 (5.30)

We saw in the last session that solutions to this equation are (by analogy to solutions of the corresponding
electrostatic equation ⇤2� = �4⇡k⇢) are

Hµ⌫(t, ~R) = 4G

Z

src

Tµ⌫(t� s,~r ) dV

s
where s ⌘ |~R� ~r | (5.31)

and the integral is a volume integral over positions ~r in the source. Now, if the source is also small compared
to R ⌘ |~R|, then s ⇡ R. If the source is also small compared to a wavelength of the wave, then the retarded
time t� s ⇡ t�R for all points on the source. In this case, the solution becomes the simpler function

Hµ⌫(t, ~R) =


4G

R

Z

src
Tµ⌫ dV

�

at t�R

(5.32)

From now on, let’s assume that all integrals over the source are calculated at the retarded time t � R (so
that we don’t have to write this over and over).

I am now going to give you an overview of where we are going so that you do not get distracted by the
mathematics required to get there. We will see that if the source’s center of mass is at rest in our coordinate
system, then Htt = 4GM/R = constant, and Hti = Hit = 0 (where, again, I am using the convention that
Latin-letter indices range only over the spatial component index values). Therefore, the only potentially
“waving” components of the trace-reversed metric perturbation Hµ⌫ are the spatial components Hij . We
will then show that the divergence theorem in conjunction with conservation of energy and momentum in
the source together imply that

Z

src
T ij dV =

1

2

d2

dt2

Z

src
T ttxixj dV =

1

2

d2

dt2

Z

src
⇢xixj dV ⌘ 1

2
Ï ij (5.33)

where I ij ⌘
R
⇢xixj dV is the source’s quadrupole moment tensor (note that it is a tensor only with

regard to rotations and displacements of the spatial coordinates). It turns out to be useful (for a number of
reasons) to use expressions involving the traceless reduced quadrupole moment tensor

�I ij ⌘
Z

src
⇢(xixj � 1

3⌘
ijr2) dV where r2 ⌘ x2 + y2 + z2 (5.34)

instead. This matrix is automatically traceless. It is also the tensor that one would use to expand the
Newtonian gravitational potential � at some large distance R from a compact and static but asymmetrical
source whose center of mass is a the origin:

� = �GM

R
� 3�I

ij

2R3

✓
Xi

R

◆✓
Xj

R

◆
+ · · · (5.35)

where Xi is a component of the radius vector ~R from the source to the observer. Therefore, the reduced
quadrupole moment tensor expresses the leading component of the field’s asphericity.

7

(2)

simple binary star systems are known and steady sources of gravitational waves, and one can make realistic
analytical calculations for the waves emitted by such sources. In what follows, I will describe how to calculate
the gravitational waves emitted by a system with two or more moving parts using the small-slow-weak
approximation, where we assume that

1. The source is small compared to both the wave’s wavelength and the distance to the observer.

2. The source is weak in that |h
µ⌫

| ⌧ 1 even very near the source. (This will be reasonable for most
astrophysical sources of gravitational waves except for coalescing black holes or neutron stars.)

3. The source is slow in that parts of the source move with speeds v ⌧ 1. (This again will be true for
most astrophysical sources other than coalescing black holes or neutron stars.)

Let’s see how these approximations can help. The weak-field limitation allows us to us the weak-field
Einstein equation even to describe the source. We seek to solve

⇤2Hµ⌫ = �16⇡GTµ⌫ subject to the Lorenz condition @
µ

Hµ⌫ = 0 (5.30)

We saw in the last session that solutions to this equation are (by analogy to solutions of the corresponding
electrostatic equation ⇤2� = �4⇡k⇢) are

Hµ⌫(t, ~R) = 4G

Z

src

Tµ⌫(t� s,~r ) dV

s
where s ⌘ |~R� ~r | (5.31)

and the integral is a volume integral over positions ~r in the source. Now, if the source is also small compared
to R ⌘ |~R|, then s ⇡ R. If the source is also small compared to a wavelength of the wave, then the retarded
time t� s ⇡ t�R for all points on the source. In this case, the solution becomes the simpler function

Hµ⌫(t, ~R) =


4G

R

Z

src
Tµ⌫ dV

�

at t�R

(5.32)

From now on, let’s assume that all integrals over the source are calculated at the retarded time t � R (so
that we don’t have to write this over and over).

I am now going to give you an overview of where we are going so that you do not get distracted by the
mathematics required to get there. We will see that if the source’s center of mass is at rest in our coordinate
system, then Htt = 4GM/R = constant, and Hti = Hit = 0 (where, again, I am using the convention that
Latin-letter indices range only over the spatial component index values). Therefore, the only potentially
“waving” components of the trace-reversed metric perturbation Hµ⌫ are the spatial components Hij . We
will then show that the divergence theorem in conjunction with conservation of energy and momentum in
the source together imply that

Z

src
T ij dV =

1

2

d2

dt2

Z

src
T ttxixj dV =

1

2

d2

dt2

Z

src
⇢xixj dV ⌘ 1

2
Ï ij (5.33)

where I ij ⌘
R
⇢xixj dV is the source’s quadrupole moment tensor (note that it is a tensor only with

regard to rotations and displacements of the spatial coordinates). It turns out to be useful (for a number of
reasons) to use expressions involving the traceless reduced quadrupole moment tensor

�I ij ⌘
Z

src
⇢(xixj � 1

3⌘
ijr2) dV where r2 ⌘ x2 + y2 + z2 (5.34)

instead. This matrix is automatically traceless. It is also the tensor that one would use to expand the
Newtonian gravitational potential � at some large distance R from a compact and static but asymmetrical
source whose center of mass is a the origin:

� = �GM

R
� 3�I

ij

2R3

✓
Xi

R

◆✓
Xj

R

◆
+ · · · (5.35)

where Xi is a component of the radius vector ~R from the source to the observer. Therefore, the reduced
quadrupole moment tensor expresses the leading component of the field’s asphericity.
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(3)

simple binary star systems are known and steady sources of gravitational waves, and one can make realistic
analytical calculations for the waves emitted by such sources. In what follows, I will describe how to calculate
the gravitational waves emitted by a system with two or more moving parts using the small-slow-weak
approximation, where we assume that

1. The source is small compared to both the wave’s wavelength and the distance to the observer.

2. The source is weak in that |h
µ⌫

| ⌧ 1 even very near the source. (This will be reasonable for most
astrophysical sources of gravitational waves except for coalescing black holes or neutron stars.)

3. The source is slow in that parts of the source move with speeds v ⌧ 1. (This again will be true for
most astrophysical sources other than coalescing black holes or neutron stars.)

Let’s see how these approximations can help. The weak-field limitation allows us to us the weak-field
Einstein equation even to describe the source. We seek to solve

⇤2Hµ⌫ = �16⇡GTµ⌫ subject to the Lorenz condition @
µ

Hµ⌫ = 0 (5.30)

We saw in the last session that solutions to this equation are (by analogy to solutions of the corresponding
electrostatic equation ⇤2� = �4⇡k⇢) are

Hµ⌫(t, ~R) = 4G

Z

src

Tµ⌫(t� s,~r ) dV

s
where s ⌘ |~R� ~r | (5.31)

and the integral is a volume integral over positions ~r in the source. Now, if the source is also small compared
to R ⌘ |~R|, then s ⇡ R. If the source is also small compared to a wavelength of the wave, then the retarded
time t� s ⇡ t�R for all points on the source. In this case, the solution becomes the simpler function

Hµ⌫(t, ~R) =


4G

R

Z

src
Tµ⌫ dV

�

at t�R

(5.32)

From now on, let’s assume that all integrals over the source are calculated at the retarded time t � R (so
that we don’t have to write this over and over).

I am now going to give you an overview of where we are going so that you do not get distracted by the
mathematics required to get there. We will see that if the source’s center of mass is at rest in our coordinate
system, then Htt = 4GM/R = constant, and Hti = Hit = 0 (where, again, I am using the convention that
Latin-letter indices range only over the spatial component index values). Therefore, the only potentially
“waving” components of the trace-reversed metric perturbation Hµ⌫ are the spatial components Hij . We
will then show that the divergence theorem in conjunction with conservation of energy and momentum in
the source together imply that

Z

src
T ij dV =

1

2

d2

dt2

Z

src
T ttxixj dV =

1

2

d2

dt2

Z

src
⇢xixj dV ⌘ 1

2
Ï ij (5.33)

where I ij ⌘
R
⇢xixj dV is the source’s quadrupole moment tensor (note that it is a tensor only with

regard to rotations and displacements of the spatial coordinates). It turns out to be useful (for a number of
reasons) to use expressions involving the traceless reduced quadrupole moment tensor

�I ij ⌘
Z

src
⇢(xixj � 1

3⌘
ijr2) dV where r2 ⌘ x2 + y2 + z2 (5.34)

instead. This matrix is automatically traceless. It is also the tensor that one would use to expand the
Newtonian gravitational potential � at some large distance R from a compact and static but asymmetrical
source whose center of mass is a the origin:

� = �GM

R
� 3�I

ij

2R3

✓
Xi

R

◆✓
Xj

R

◆
+ · · · (5.35)

where Xi is a component of the radius vector ~R from the source to the observer. Therefore, the reduced
quadrupole moment tensor expresses the leading component of the field’s asphericity.

7

(4)

So the physically significant transverse-traceless components of the gravitational waves from a small-
slow-weak source (assuming that the observer is at a point in the +z direction relative to the source) are

Hxx

TT

= 1
2 (H

xx �Hyy) =
2G

R
1
2 (Ï

xx � Ïyy) =
2G

R
1
2 (�̈I

xx � �̈I yy) ⌘ 2G

R
�̈I xx

TT

(5.36a)

Hyy

TT

= 1
2 (H

yy �Hxx) =
2G

R
1
2 (Ï

yy � Ïxx) =
2G

R
1
2 (�̈I

yy � �̈I xx) ⌘ 2G

R
�̈I yy

TT

(5.36b)

Hxy

TT

=
2G

R
Ïxy =

2G

R
�̈I xy ⌘ 2G

R
�̈I xy

TT

(5.36c)

Note that Ïxx � Ïyy = �̈I xx � �̈I yy because the extra term � d

2

dt

2 [
R
⇢r2dV ] that appears in the reduced

quadrupole moment tensor terms cancels out of the di↵erence. Equations 5.36 therefore define the “transverse-
traceless” components of the reduced quadrupole moment tensor for waves traveling in the +z direction. In
many cases, we will be able to orient our coordinate system so that waves for a given observer are moving
in this direction.

Note that a spherically symmetric source has zero quadrupole moment tensor, and therefore will not
radiate gravitational waves, even if it is expanding or contracting. According to Bircho↵ ’s theorem, this
statement is actually true no matter how strong the gravitational fields are, how relativistic the source is,
and how close we are to the source. For a proof of this theorem, see chapter 23 in my book.1

Now that we see the big picture, let’s dig into the mathematics. First consider the metric perturbation
components Htµ. According to the definitions of the stress-energy components, in a LIF, we have

T tt = density of energy = ⇢ (5.37a)

T it = T ti = density of i-momentum (5.37b)

This should also be true (to the level of our approximations) in the “nearly cartesian” we use in the weak-
field limit (since Tµ⌫ is already of the order of hµ⌫ , corrections will be of order |hµ⌫ |2 and so are negligible).
Therefore, we have

Z

src
T tt dV =

Z

src
⇢ dV = M, and

Z

src
T ti dV =

Z

src
T it dV = P i (5.38)

where M is the source’s total mass-energy and ~P is its total momentum. But if we anchor our coordinates
to the source’s center of mass, then ~P = 0. If our source is also “small,” then equation 5.32 tells us that

Htt =
4G

R

Z

src
T ttdV =

4GM

R
and Hti =

4G

R

Z

src
T tidV = 0 = Hit (5.39)

as I claimed earlier.
Now let’s consider the metric perturbation components Hij . In a LIF, conservation of energy requires

that @
µ

Tµ⌫ = 0. Again, this should still be true to our level of approximation in our “nearly cartesian”
coordinates. If we break this up into time and space parts, we have

0 = @
t

T t⌫ + @
i

T i⌫ ) @
t

T t⌫ = �@
i

T i⌫ (5.40)

Now, note that in the quantity T ttxixj that appears in equation 5.33, xi and xj are the components of the
position of a volume element in the source. Therefore, they are independent of time: though T tt inside the
volume element may vary with time, the position of the volume element itself will not. Therefore, we can do
the following steps of calculation:

@
t

@
t

(T ttxixj) = (@
t

@
t

T tt)xixj (5.41a)

= �(@
t

@
m

T mt)xixj (5.41b)

= �(@
m

@
t

T tm)xixj (5.41c)

= +(@
m

@
n

T nm)xixj (5.41d)

= @
m

@
n

(T mnxixj)� 2@
n

(T nixj + T njxi) + 2T ij (5.41e)
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Gravitational Wave Energy
Energy conservation in GR is a tricky topic, but here is a commonly 
accepted trick for handling energy in gravitational waves.

Einstein equation is to first order in the metric perturbation:

In this particular case, we can employ a generally accepted trick that satisfies one’s intuition about how
gravitational waves should conserve energy and which allows us to calculate an e↵ective energy carried by
the waves in this limit.

The Einstein equation to first order in the metric perturbation h
µ⌫

(and in the coordinates defined by
the Lorenz gauge condition) tells us that

�2G(1)
µ⌫

= ⇤2H
µ⌫

= �16⇡GT
µ⌫

(5.49)

where G
(1)
µ⌫

is the Einstein tensor evaluated to first order in h
µ⌫

and H
µ⌫

= h
µ⌫

� 1
2⌘µ⌫h as we have defined

before. This equation describes how a gravitational field is created by the density of non-gravitational energy
and momentum expressed by the stress-energy tensor Tµ⌫ .

Now the full Einstein equation also include feedback e↵ects that describe how the gravitational field a↵ects
itself: these are expressed by the fact that the Einstein tensor is nonlinear in the metric (contains terms
where metric components are multiplied together). People sometimes loosely (and arguably inaccurately)
interpret these internal feedback e↵ects in the strong-field limit as telling us that the gravitational field has
an energy that is also the source of a gravitational field. But however one interprets these nonlinearities,
they do not appear in the weak-field approximation, because we are dropping terms of order |h

µ⌫

|2 (indeed,
that is the point of the weak-field limit!).

The commonly accepted trick is to expand the left side of the weak-field Einstein equation to second
order in the metric:

�2G(1)
µ⌫

� 2G(2)
µ⌫

= ⇤2H
µ⌫

� 2G(2)
µ⌫

= �16⇡GT
µ⌫

(5.50)

(We can get away with only doing this to the left side, because on the right side, the second-order metric
terms h

ij

h
mn

that in transverse-traceless gauge might actually appear on the right multiply pressure and
momentum flow terms that are much smaller than T tt = ⇢ in the “slow” limit where the fluid is nonrelativistic.
Since T tt is already of order h

µ⌫

, the second-order terms on the right remain negligible.) Now remember
that in the weak-field limit, we are pretending that spacetime is flat and that gravity is completely described

by a tensor field H
µ⌫

that sits on top of that flat spacetime. Moving the 2G(�2)
µ⌫

term to the other side yields

⇤2H
µ⌫

= �16⇡GT
µ⌫

+ 2G(2)
µ⌫

= �16⇡G(T
µ⌫

+ TGW

µ⌫

) where TGW

µ⌫

⌘ G
(2)
µ⌫

8⇡G
(5.51)

In this way of interpreting the equation, TGW

µ⌫

is acting along with the non-gravitational stress-energy T
µ⌫

to
create the gravitational field H

µ⌫

, so it is acting like a stress-energy of the gravitational field. Moreover,
since @

µ

Hµ⌫ = 0 in the Lorenz gauge we are working in, so if we raise indices on both sides of the equation
above and then take the divergence of both sides, we get

@
µ

(T µ⌫ + T µ⌫

GW

) = 0 (5.52)

which expresses local conservation of the sum of matter-energy and gravitational field energy, and because
we are pretending we are in flat spacetime, we can integrate this to express a global conservation law
(gravitational wave energy that crosses the surface of a distant surface surrounding the source comes at the
expense of energy in the source).

The only problem is that the quantity T µ⌫

GW

is a tensor only with regard to Lorentz transformations, not
general coordinate transformations. It is not even invariant with regard to our gauge transformations. It
only begins to make sense if we average over several wavelengths of the the gravitational wave because it
happens that the terms that ruin the invariance average to zero. So as long as we are willing to accept these
limitations, modifying the definition of the gravitational stress-energy to read

TGW

µ⌫

⌘ hG(2)
µ⌫

i
8⇡G

(5.53)

where the h i brackets indicate an average over several wavelengths, then we have something that we can
meaningfully treat as representing the energy of a gravitational wave.

So our next task is to actually evaluate this quantity for a gravitational wave in transverse-traceless
coordinates for a plus-polarized gravitational plane wave moving in the +z direction. Let’s define the
following short-hand expressions for quantities involved in the wave:

h+(t, z) ⌘ A+ cos(!t� !z) = hTT

xx

= �hTT

yy

(5.54a)

ḣ+ ⌘ @
t

h+ = �@
z

h+ = �A+! sin(!t� !z) (5.54b)

ḧ+ ⌘ @
t

@
t

h+ = @
z

@
z

h+ = �@
t

@
z

h+ = �@
z

@
t

h+ = �!2h+ (5.54c)
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Trick is to expand the left side to second-order in the perturbation

In this particular case, we can employ a generally accepted trick that satisfies one’s intuition about how
gravitational waves should conserve energy and which allows us to calculate an e↵ective energy carried by
the waves in this limit.

The Einstein equation to first order in the metric perturbation h
µ⌫

(and in the coordinates defined by
the Lorenz gauge condition) tells us that

�2G(1)
µ⌫

= ⇤2H
µ⌫

= �16⇡GT
µ⌫

(5.49)

where G
(1)
µ⌫

is the Einstein tensor evaluated to first order in h
µ⌫

and H
µ⌫

= h
µ⌫

� 1
2⌘µ⌫h as we have defined

before. This equation describes how a gravitational field is created by the density of non-gravitational energy
and momentum expressed by the stress-energy tensor Tµ⌫ .

Now the full Einstein equation also include feedback e↵ects that describe how the gravitational field a↵ects
itself: these are expressed by the fact that the Einstein tensor is nonlinear in the metric (contains terms
where metric components are multiplied together). People sometimes loosely (and arguably inaccurately)
interpret these internal feedback e↵ects in the strong-field limit as telling us that the gravitational field has
an energy that is also the source of a gravitational field. But however one interprets these nonlinearities,
they do not appear in the weak-field approximation, because we are dropping terms of order |h

µ⌫

|2 (indeed,
that is the point of the weak-field limit!).

The commonly accepted trick is to expand the left side of the weak-field Einstein equation to second
order in the metric:

�2G(1)
µ⌫

� 2G(2)
µ⌫

= ⇤2H
µ⌫

� 2G(2)
µ⌫

= �16⇡GT
µ⌫

(5.50)

(We can get away with only doing this to the left side, because on the right side, the second-order metric
terms h

ij

h
mn

that in transverse-traceless gauge might actually appear on the right multiply pressure and
momentum flow terms that are much smaller than T tt = ⇢ in the “slow” limit where the fluid is nonrelativistic.
Since T tt is already of order h

µ⌫

, the second-order terms on the right remain negligible.) Now remember
that in the weak-field limit, we are pretending that spacetime is flat and that gravity is completely described

by a tensor field H
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that sits on top of that flat spacetime. Moving the 2G(�2)
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In this way of interpreting the equation, TGW

µ⌫

is acting along with the non-gravitational stress-energy T
µ⌫

to
create the gravitational field H

µ⌫

, so it is acting like a stress-energy of the gravitational field. Moreover,
since @

µ

Hµ⌫ = 0 in the Lorenz gauge we are working in, so if we raise indices on both sides of the equation
above and then take the divergence of both sides, we get
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) = 0 (5.52)

which expresses local conservation of the sum of matter-energy and gravitational field energy, and because
we are pretending we are in flat spacetime, we can integrate this to express a global conservation law
(gravitational wave energy that crosses the surface of a distant surface surrounding the source comes at the
expense of energy in the source).

The only problem is that the quantity T µ⌫

GW

is a tensor only with regard to Lorentz transformations, not
general coordinate transformations. It is not even invariant with regard to our gauge transformations. It
only begins to make sense if we average over several wavelengths of the the gravitational wave because it
happens that the terms that ruin the invariance average to zero. So as long as we are willing to accept these
limitations, modifying the definition of the gravitational stress-energy to read
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where the h i brackets indicate an average over several wavelengths, then we have something that we can
meaningfully treat as representing the energy of a gravitational wave.

So our next task is to actually evaluate this quantity for a gravitational wave in transverse-traceless
coordinates for a plus-polarized gravitational plane wave moving in the +z direction. Let’s define the
following short-hand expressions for quantities involved in the wave:
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Treat the 2nd-order part as a stress-energy tensor for gravitational waves:

In this particular case, we can employ a generally accepted trick that satisfies one’s intuition about how
gravitational waves should conserve energy and which allows us to calculate an e↵ective energy carried by
the waves in this limit.
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before. This equation describes how a gravitational field is created by the density of non-gravitational energy
and momentum expressed by the stress-energy tensor Tµ⌫ .

Now the full Einstein equation also include feedback e↵ects that describe how the gravitational field a↵ects
itself: these are expressed by the fact that the Einstein tensor is nonlinear in the metric (contains terms
where metric components are multiplied together). People sometimes loosely (and arguably inaccurately)
interpret these internal feedback e↵ects in the strong-field limit as telling us that the gravitational field has
an energy that is also the source of a gravitational field. But however one interprets these nonlinearities,
they do not appear in the weak-field approximation, because we are dropping terms of order |h

µ⌫

|2 (indeed,
that is the point of the weak-field limit!).

The commonly accepted trick is to expand the left side of the weak-field Einstein equation to second
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terms h
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that in transverse-traceless gauge might actually appear on the right multiply pressure and
momentum flow terms that are much smaller than T tt = ⇢ in the “slow” limit where the fluid is nonrelativistic.
Since T tt is already of order h
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, the second-order terms on the right remain negligible.) Now remember
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to
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above and then take the divergence of both sides, we get
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which expresses local conservation of the sum of matter-energy and gravitational field energy, and because
we are pretending we are in flat spacetime, we can integrate this to express a global conservation law
(gravitational wave energy that crosses the surface of a distant surface surrounding the source comes at the
expense of energy in the source).

The only problem is that the quantity T µ⌫

GW

is a tensor only with regard to Lorentz transformations, not
general coordinate transformations. It is not even invariant with regard to our gauge transformations. It
only begins to make sense if we average over several wavelengths of the the gravitational wave because it
happens that the terms that ruin the invariance average to zero. So as long as we are willing to accept these
limitations, modifying the definition of the gravitational stress-energy to read
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where the h i brackets indicate an average over several wavelengths, then we have something that we can
meaningfully treat as representing the energy of a gravitational wave.

So our next task is to actually evaluate this quantity for a gravitational wave in transverse-traceless
coordinates for a plus-polarized gravitational plane wave moving in the +z direction. Let’s define the
following short-hand expressions for quantities involved in the wave:
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In this particular case, we can employ a generally accepted trick that satisfies one’s intuition about how
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itself: these are expressed by the fact that the Einstein tensor is nonlinear in the metric (contains terms
where metric components are multiplied together). People sometimes loosely (and arguably inaccurately)
interpret these internal feedback e↵ects in the strong-field limit as telling us that the gravitational field has
an energy that is also the source of a gravitational field. But however one interprets these nonlinearities,
they do not appear in the weak-field approximation, because we are dropping terms of order |h
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that in transverse-traceless gauge might actually appear on the right multiply pressure and
momentum flow terms that are much smaller than T tt = ⇢ in the “slow” limit where the fluid is nonrelativistic.
Since T tt is already of order h
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above and then take the divergence of both sides, we get
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which expresses local conservation of the sum of matter-energy and gravitational field energy, and because
we are pretending we are in flat spacetime, we can integrate this to express a global conservation law
(gravitational wave energy that crosses the surface of a distant surface surrounding the source comes at the
expense of energy in the source).

The only problem is that the quantity T µ⌫

GW

is a tensor only with regard to Lorentz transformations, not
general coordinate transformations. It is not even invariant with regard to our gauge transformations. It
only begins to make sense if we average over several wavelengths of the the gravitational wave because it
happens that the terms that ruin the invariance average to zero. So as long as we are willing to accept these
limitations, modifying the definition of the gravitational stress-energy to read
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where the h i brackets indicate an average over several wavelengths, then we have something that we can
meaningfully treat as representing the energy of a gravitational wave.

So our next task is to actually evaluate this quantity for a gravitational wave in transverse-traceless
coordinates for a plus-polarized gravitational plane wave moving in the +z direction. Let’s define the
following short-hand expressions for quantities involved in the wave:
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In this particular case, we can employ a generally accepted trick that satisfies one’s intuition about how
gravitational waves should conserve energy and which allows us to calculate an e↵ective energy carried by
the waves in this limit.
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before. This equation describes how a gravitational field is created by the density of non-gravitational energy
and momentum expressed by the stress-energy tensor Tµ⌫ .

Now the full Einstein equation also include feedback e↵ects that describe how the gravitational field a↵ects
itself: these are expressed by the fact that the Einstein tensor is nonlinear in the metric (contains terms
where metric components are multiplied together). People sometimes loosely (and arguably inaccurately)
interpret these internal feedback e↵ects in the strong-field limit as telling us that the gravitational field has
an energy that is also the source of a gravitational field. But however one interprets these nonlinearities,
they do not appear in the weak-field approximation, because we are dropping terms of order |h
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|2 (indeed,
that is the point of the weak-field limit!).

The commonly accepted trick is to expand the left side of the weak-field Einstein equation to second
order in the metric:
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(We can get away with only doing this to the left side, because on the right side, the second-order metric
terms h
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that in transverse-traceless gauge might actually appear on the right multiply pressure and
momentum flow terms that are much smaller than T tt = ⇢ in the “slow” limit where the fluid is nonrelativistic.
Since T tt is already of order h
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, the second-order terms on the right remain negligible.) Now remember
that in the weak-field limit, we are pretending that spacetime is flat and that gravity is completely described

by a tensor field H
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In this way of interpreting the equation, TGW
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is acting along with the non-gravitational stress-energy T
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to
create the gravitational field H
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, so it is acting like a stress-energy of the gravitational field. Moreover,
since @

µ

Hµ⌫ = 0 in the Lorenz gauge we are working in, so if we raise indices on both sides of the equation
above and then take the divergence of both sides, we get

@
µ

(T µ⌫ + T µ⌫
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) = 0 (5.52)

which expresses local conservation of the sum of matter-energy and gravitational field energy, and because
we are pretending we are in flat spacetime, we can integrate this to express a global conservation law
(gravitational wave energy that crosses the surface of a distant surface surrounding the source comes at the
expense of energy in the source).

The only problem is that the quantity T µ⌫

GW

is a tensor only with regard to Lorentz transformations, not
general coordinate transformations. It is not even invariant with regard to our gauge transformations. It
only begins to make sense if we average over several wavelengths of the the gravitational wave because it
happens that the terms that ruin the invariance average to zero. So as long as we are willing to accept these
limitations, modifying the definition of the gravitational stress-energy to read

TGW
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⌘ hG(2)
µ⌫
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8⇡G

(5.53)

where the h i brackets indicate an average over several wavelengths, then we have something that we can
meaningfully treat as representing the energy of a gravitational wave.

So our next task is to actually evaluate this quantity for a gravitational wave in transverse-traceless
coordinates for a plus-polarized gravitational plane wave moving in the +z direction. Let’s define the
following short-hand expressions for quantities involved in the wave:
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Gravitational Wave Energy
Problems:
1.             is only a tensor with regard to Lorentz-type transformations
2. It is not even invariant under a gauge transformation to TT!
3. But it does work if we average over several wavelengths:

In this particular case, we can employ a generally accepted trick that satisfies one’s intuition about how
gravitational waves should conserve energy and which allows us to calculate an e↵ective energy carried by
the waves in this limit.

The Einstein equation to first order in the metric perturbation h
µ⌫

(and in the coordinates defined by
the Lorenz gauge condition) tells us that

�2G(1)
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where G
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is the Einstein tensor evaluated to first order in h
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and H
µ⌫

= h
µ⌫

� 1
2⌘µ⌫h as we have defined

before. This equation describes how a gravitational field is created by the density of non-gravitational energy
and momentum expressed by the stress-energy tensor Tµ⌫ .

Now the full Einstein equation also include feedback e↵ects that describe how the gravitational field a↵ects
itself: these are expressed by the fact that the Einstein tensor is nonlinear in the metric (contains terms
where metric components are multiplied together). People sometimes loosely (and arguably inaccurately)
interpret these internal feedback e↵ects in the strong-field limit as telling us that the gravitational field has
an energy that is also the source of a gravitational field. But however one interprets these nonlinearities,
they do not appear in the weak-field approximation, because we are dropping terms of order |h

µ⌫

|2 (indeed,
that is the point of the weak-field limit!).

The commonly accepted trick is to expand the left side of the weak-field Einstein equation to second
order in the metric:
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(We can get away with only doing this to the left side, because on the right side, the second-order metric
terms h
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that in transverse-traceless gauge might actually appear on the right multiply pressure and
momentum flow terms that are much smaller than T tt = ⇢ in the “slow” limit where the fluid is nonrelativistic.
Since T tt is already of order h
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, the second-order terms on the right remain negligible.) Now remember
that in the weak-field limit, we are pretending that spacetime is flat and that gravity is completely described
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In this way of interpreting the equation, TGW

µ⌫

is acting along with the non-gravitational stress-energy T
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to
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, so it is acting like a stress-energy of the gravitational field. Moreover,
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Hµ⌫ = 0 in the Lorenz gauge we are working in, so if we raise indices on both sides of the equation
above and then take the divergence of both sides, we get
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(T µ⌫ + T µ⌫

GW

) = 0 (5.52)

which expresses local conservation of the sum of matter-energy and gravitational field energy, and because
we are pretending we are in flat spacetime, we can integrate this to express a global conservation law
(gravitational wave energy that crosses the surface of a distant surface surrounding the source comes at the
expense of energy in the source).

The only problem is that the quantity T µ⌫

GW

is a tensor only with regard to Lorentz transformations, not
general coordinate transformations. It is not even invariant with regard to our gauge transformations. It
only begins to make sense if we average over several wavelengths of the the gravitational wave because it
happens that the terms that ruin the invariance average to zero. So as long as we are willing to accept these
limitations, modifying the definition of the gravitational stress-energy to read
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⌘ hG(2)
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(5.53)

where the h i brackets indicate an average over several wavelengths, then we have something that we can
meaningfully treat as representing the energy of a gravitational wave.

So our next task is to actually evaluate this quantity for a gravitational wave in transverse-traceless
coordinates for a plus-polarized gravitational plane wave moving in the +z direction. Let’s define the
following short-hand expressions for quantities involved in the wave:
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In this particular case, we can employ a generally accepted trick that satisfies one’s intuition about how
gravitational waves should conserve energy and which allows us to calculate an e↵ective energy carried by
the waves in this limit.

The Einstein equation to first order in the metric perturbation h
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(and in the coordinates defined by
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and momentum expressed by the stress-energy tensor Tµ⌫ .
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itself: these are expressed by the fact that the Einstein tensor is nonlinear in the metric (contains terms
where metric components are multiplied together). People sometimes loosely (and arguably inaccurately)
interpret these internal feedback e↵ects in the strong-field limit as telling us that the gravitational field has
an energy that is also the source of a gravitational field. But however one interprets these nonlinearities,
they do not appear in the weak-field approximation, because we are dropping terms of order |h
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|2 (indeed,
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(We can get away with only doing this to the left side, because on the right side, the second-order metric
terms h

ij

h
mn

that in transverse-traceless gauge might actually appear on the right multiply pressure and
momentum flow terms that are much smaller than T tt = ⇢ in the “slow” limit where the fluid is nonrelativistic.
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above and then take the divergence of both sides, we get
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which expresses local conservation of the sum of matter-energy and gravitational field energy, and because
we are pretending we are in flat spacetime, we can integrate this to express a global conservation law
(gravitational wave energy that crosses the surface of a distant surface surrounding the source comes at the
expense of energy in the source).

The only problem is that the quantity T µ⌫

GW

is a tensor only with regard to Lorentz transformations, not
general coordinate transformations. It is not even invariant with regard to our gauge transformations. It
only begins to make sense if we average over several wavelengths of the the gravitational wave because it
happens that the terms that ruin the invariance average to zero. So as long as we are willing to accept these
limitations, modifying the definition of the gravitational stress-energy to read
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where the h i brackets indicate an average over several wavelengths, then we have something that we can
meaningfully treat as representing the energy of a gravitational wave.

So our next task is to actually evaluate this quantity for a gravitational wave in transverse-traceless
coordinates for a plus-polarized gravitational plane wave moving in the +z direction. Let’s define the
following short-hand expressions for quantities involved in the wave:
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Gravitational Wave Energy
Consider the case of a plus polarized wave.  Define:

In this particular case, we can employ a generally accepted trick that satisfies one’s intuition about how
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where the h i brackets indicate an average over several wavelengths, then we have something that we can
meaningfully treat as representing the energy of a gravitational wave.

So our next task is to actually evaluate this quantity for a gravitational wave in transverse-traceless
coordinates for a plus-polarized gravitational plane wave moving in the +z direction. Let’s define the
following short-hand expressions for quantities involved in the wave:
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Use Diagonal Metric Worksheet with A = D = 1, B = 1 + h+, C = 1 – h+:

For this perturbation, the metric is completely diagonal so we can use the Diagonal Metric Worksheet
(with A = 1, B = 1 + h+, C = 1� h+, D = 1) to evaluate the Ricci tensor. Note that

B0 = C3 = �C0 = �B3 = ḣ+ (5.55a)

B00 = B33 = C03 = �B03 = �C00 = �C33 = ḧ+ (5.55b)

and all other derivatives are nonzero. So, for example, the only nonzero terms in the Diagonal Metric
Worksheet’s expansion for R00 = R

tt

are:

R
tt

= � 1
2BB00 � 1

2CC00 +
1

4B2B
2
0 + 1

4C2C
2
0

= � ḧ+

2(1 + h+)
� �ḧ+

2(1� h+)
+

ḣ2
+

4(1 + h+)2
+

ḣ2
+

4(1� h+)2
(5.56)

Now, we are only trying to keep through order h2
+, so we can use the binomial approximation to rewrite

the denominators in the first two terms, because we only need values representing the denominators to be
accurate to order h+. For the second two terms, the numerators are already second order in h+, so the
denominators are simply 4 to this order. This leaves us with

R
tt

= � 1
2 ḧ+(1� h+) +

1
2 ḧ+(1 + h+) +

1
2 ḣ

2
+ = ḧ+h+ + 1

2 ḣ
2
+ (5.57)

Now we average over several wavelengths:
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i = hḧ+h+ + 1
2 ḣ

2
+i = h�A2
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2
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2 sin2 ✓ i
= �!2A2

+hcos2 ✓ � sin2 ✓ � 1
2 sin

2 ✓i = �!2A2
+hsin 2✓i � 1

2!
2A2

+hsin2 ✓i
= 0� 1

2 hḣ+ḣ+i (5.58)

where ✓ = !t� !z. In a similar way, you can show that R
zz

= R
tt

= �R
tz

= �R
zt

, and all other R
µ⌫

= 0.

5.4.1 Exercise: R
tz

The Diagonal Metric Worksheet’s expansion for R
tz

is

R
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= � 1
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2CC03 +
1

4B2B0B3 � 1
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1
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4DB
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1

4DC

D0C3 (5.59)

Use this to show that R
tz

= �R
tt

through second order in h+.

This means that

R = gµ⌫R
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= �(1� htt)R
tt

+ (1� hzz)R
zz

= �(1 + 0)R
tt

+ (1 + 0)R
tt

= 0 (5.60)

in transverse-traceless gauge. So the e↵ective energy density of an uprightly polarized gravitational wave is
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= �hG(2)
tt

i
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= �hR(2)
tt

i
8⇡G

= +
hḣ+ḣ+i
16⇡G

(5.61)

The energy contributed by a diagonally polarized wave is trickier to calculate (we can’t use the Diagonal
Metric Worksheet), But the result cannot be any di↵erent than the above, because we can convert an
uprightly polarized wave to a diagonally polarized wave simply by rotating coordinates by 45� around the z
axis. Therefore, the formula for the total energy density of an arbitrary gravitational wave moving in the z
direction must be

TGW

tt

=
1

16⇡G
hḣ+ḣ+ + ḣ⇥ḣ⇥i (5.62)

We can write this more generally in the form
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tt

=
1

32⇡G
hḣTT

jk

ḣjk

TT

i (5.63)

(Since this sums over A2
xx

and A2
yy

and also A2
xy

and A2
yx

, we get a factor of 2 in the inside the brackets
that must be canceled by another factor of 2 in the denominator.) The advantage of this final expression is
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+, so we can use the binomial approximation to rewrite

the denominators in the first two terms, because we only need values representing the denominators to be
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Use this to show that R
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in transverse-traceless gauge. So the e↵ective energy density of an uprightly polarized gravitational wave is
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The energy contributed by a diagonally polarized wave is trickier to calculate (we can’t use the Diagonal
Metric Worksheet), But the result cannot be any di↵erent than the above, because we can convert an
uprightly polarized wave to a diagonally polarized wave simply by rotating coordinates by 45� around the z
axis. Therefore, the formula for the total energy density of an arbitrary gravitational wave moving in the z
direction must be
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Gravitational Wave Energy
Use binomial approximation and drop terms beyond second order:

For this perturbation, the metric is completely diagonal so we can use the Diagonal Metric Worksheet
(with A = 1, B = 1 + h+, C = 1� h+, D = 1) to evaluate the Ricci tensor. Note that

B0 = C3 = �C0 = �B3 = ḣ+ (5.55a)

B00 = B33 = C03 = �B03 = �C00 = �C33 = ḧ+ (5.55b)

and all other derivatives are nonzero. So, for example, the only nonzero terms in the Diagonal Metric
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(5.56)

Now, we are only trying to keep through order h2
+, so we can use the binomial approximation to rewrite

the denominators in the first two terms, because we only need values representing the denominators to be
accurate to order h+. For the second two terms, the numerators are already second order in h+, so the
denominators are simply 4 to this order. This leaves us with
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Now we average over several wavelengths:
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where ✓ = !t� !z. In a similar way, you can show that R
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= R
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, and all other R
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= 0.
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Use this to show that R
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through second order in h+.
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in transverse-traceless gauge. So the e↵ective energy density of an uprightly polarized gravitational wave is
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The energy contributed by a diagonally polarized wave is trickier to calculate (we can’t use the Diagonal
Metric Worksheet), But the result cannot be any di↵erent than the above, because we can convert an
uprightly polarized wave to a diagonally polarized wave simply by rotating coordinates by 45� around the z
axis. Therefore, the formula for the total energy density of an arbitrary gravitational wave moving in the z
direction must be
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We can write this more generally in the form
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(Since this sums over A2
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and A2
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and also A2
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and A2
yx

, we get a factor of 2 in the inside the brackets
that must be canceled by another factor of 2 in the denominator.) The advantage of this final expression is
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For this perturbation, the metric is completely diagonal so we can use the Diagonal Metric Worksheet
(with A = 1, B = 1 + h+, C = 1� h+, D = 1) to evaluate the Ricci tensor. Note that

B0 = C3 = �C0 = �B3 = ḣ+ (5.55a)

B00 = B33 = C03 = �B03 = �C00 = �C33 = ḧ+ (5.55b)

and all other derivatives are nonzero. So, for example, the only nonzero terms in the Diagonal Metric
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Now, we are only trying to keep through order h2
+, so we can use the binomial approximation to rewrite

the denominators in the first two terms, because we only need values representing the denominators to be
accurate to order h+. For the second two terms, the numerators are already second order in h+, so the
denominators are simply 4 to this order. This leaves us with
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= �(1 + 0)R
tt

+ (1 + 0)R
tt

= 0 (5.60)
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The energy contributed by a diagonally polarized wave is trickier to calculate (we can’t use the Diagonal
Metric Worksheet), But the result cannot be any di↵erent than the above, because we can convert an
uprightly polarized wave to a diagonally polarized wave simply by rotating coordinates by 45� around the z
axis. Therefore, the formula for the total energy density of an arbitrary gravitational wave moving in the z
direction must be
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, we get a factor of 2 in the inside the brackets
that must be canceled by another factor of 2 in the denominator.) The advantage of this final expression is
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(with A = 1, B = 1 + h+, C = 1� h+, D = 1) to evaluate the Ricci tensor. Note that

B0 = C3 = �C0 = �B3 = ḣ+ (5.55a)
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Now, we are only trying to keep through order h2
+, so we can use the binomial approximation to rewrite
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2 hḣ+ḣ+i (5.58)

where ✓ = !t� !z. In a similar way, you can show that R
zz

= R
tt

= �R
tz

= �R
zt

, and all other R
µ⌫

= 0.

5.4.1 Exercise: R
tz

The Diagonal Metric Worksheet’s expansion for R
tz

is

R
tz

= � 1
2BB03 � 1

2CC03 +
1

4B2B0B3 � 1
4C2C0C3 +

1
4AB

A3B0 +
1

4AC

A3C0 +
1

4DB

D0B3 +
1

4DC

D0C3 (5.59)

Use this to show that R
tz

= �R
tt

through second order in h+.

This means that

R = gµ⌫R
µ⌫

= �(1� htt)R
tt

+ (1� hzz)R
zz

= �(1 + 0)R
tt

+ (1 + 0)R
tt

= 0 (5.60)

in transverse-traceless gauge. So the e↵ective energy density of an uprightly polarized gravitational wave is

TGW

tt

= �hG(2)
tt

i
8⇡G

= �hR(2)
tt

i
8⇡G

= +
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The energy contributed by a diagonally polarized wave is trickier to calculate (we can’t use the Diagonal
Metric Worksheet), But the result cannot be any di↵erent than the above, because we can convert an
uprightly polarized wave to a diagonally polarized wave simply by rotating coordinates by 45� around the z
axis. Therefore, the formula for the total energy density of an arbitrary gravitational wave moving in the z
direction must be
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ḣjk

TT

i (5.63)

(Since this sums over A2
xx

and A2
yy

and also A2
xy

and A2
yx

, we get a factor of 2 in the inside the brackets
that must be canceled by another factor of 2 in the denominator.) The advantage of this final expression is

11

Similarly:  

For this perturbation, the metric is completely diagonal so we can use the Diagonal Metric Worksheet
(with A = 1, B = 1 + h+, C = 1� h+, D = 1) to evaluate the Ricci tensor. Note that

B0 = C3 = �C0 = �B3 = ḣ+ (5.55a)
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i = hḧ+h+ + 1
2 ḣ
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+ = ḧ+h+ + 1

2 ḣ
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2
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Now, we are only trying to keep through order h2
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The energy contributed by a diagonally polarized wave is trickier to calculate (we can’t use the Diagonal
Metric Worksheet), But the result cannot be any di↵erent than the above, because we can convert an
uprightly polarized wave to a diagonally polarized wave simply by rotating coordinates by 45� around the z
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that must be canceled by another factor of 2 in the denominator.) The advantage of this final expression is
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The energy contributed by a diagonally polarized wave is trickier to calculate (we can’t use the Diagonal
Metric Worksheet), But the result cannot be any di↵erent than the above, because we can convert an
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B00 = B33 = C03 = �B03 = �C00 = �C33 = ḧ+ (5.55b)
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The energy contributed by a diagonally polarized wave is trickier to calculate (we can’t use the Diagonal
Metric Worksheet), But the result cannot be any di↵erent than the above, because we can convert an
uprightly polarized wave to a diagonally polarized wave simply by rotating coordinates by 45� around the z
axis. Therefore, the formula for the total energy density of an arbitrary gravitational wave moving in the z
direction must be
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hḣ+ḣ+ + ḣ⇥ḣ⇥i (5.62)

We can write this more generally in the form

TGW

tt

=
1

32⇡G
hḣTT
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ḣjk

TT

i (5.63)

(Since this sums over A2
xx

and A2
yy

and also A2
xy

and A2
yx

, we get a factor of 2 in the inside the brackets
that must be canceled by another factor of 2 in the denominator.) The advantage of this final expression is

11
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The energy contributed by a diagonally polarized wave is trickier to calculate (we can’t use the Diagonal
Metric Worksheet), But the result cannot be any di↵erent than the above, because we can convert an
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2
+i = h�A2

+!
2 cos2 ✓ + 1

2A
2
+!

2 sin2 ✓ i
= �!2A2

+hcos2 ✓ � sin2 ✓ � 1
2 sin

2 ✓i = �!2A2
+hsin 2✓i � 1

2!
2A2

+hsin2 ✓i
= 0� 1
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The energy contributed by a diagonally polarized wave is trickier to calculate (we can’t use the Diagonal
Metric Worksheet), But the result cannot be any di↵erent than the above, because we can convert an
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The energy contributed by a diagonally polarized wave is trickier to calculate (we can’t use the Diagonal
Metric Worksheet), But the result cannot be any di↵erent than the above, because we can convert an
uprightly polarized wave to a diagonally polarized wave simply by rotating coordinates by 45� around the z
axis. Therefore, the formula for the total energy density of an arbitrary gravitational wave moving in the z
direction must be
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Gravitational wave energy flux is   (Exercise:  Why flux = density?)

that the quantity inside the brackets is a scalar with respect to rotations in 3-space, and therefore will not
depend on what direction the waves are moving, as long as we are in transverse-traceless gauge for whatever
direction that is.

Finally, the gravitational wave energy flux (energy per unit time per unit area) in the z direction is

T tz
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5.4.2 Exercise: Why is Energy Flux = Energy Density?

Explain physically why a gravitational wave energy flux should have the same magnitude as the gravitational
wave energy density in units where c = 1. (Hint: Consider a surface of area A perpendicular to the wave.
What volume of gravitational wave energy will go through that area in a time interval �t?)

5.5 Source Luminosities.

We now know how to calculate the gravitational waves moving in the +z direction generated by a given
source, and we also know how to calculate the energy flux involved in such waves. This should give us what
we need to know to calculate the total luminosity of a gravitational wave source, right?

The remaining problem is that gravitational waves from a given source will be radiated in all directions,
and right now we only know how to calculate the transverse-traceless components for a wave moving in
the +z direction. We need to find how to find the components transverse-traceless components for a wave
moving in an arbitrary direction ~n in a fixed coordinate system.

Conceptually, this is actually not di�cult. We saw that for waves moving in the +z direction, we are
able to simply project the the solution Hµ⌫ onto a spatial plane perpendicular to the direction of motion,
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since nkn
k

= ~n ⇧ ~n = 1. (Remember that in this e↵ectively flat spacetime, raising and lowering spatial
indices does nothing: n

i

= ⌘
ij

nj = (+1)ni.) Multiplying half of this times the projection matrix itself
should be a matrix having nonzero diagonal elements perpendicular to ~n that are both half the trace of
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Source Luminosities:
TT gauge for arbitrary directions
The problem for calculating luminosities: we have a different TT gauge 
for every wave direction (and we have only done it for the z direction).

Conceptually, this is not difficult. For a wave in the +z direction, we:
1. Project           onto the plane perpendicular to the wave’s direction
2. Subtract half of the trace of the projected matrix from the two  

remaining diagonal elements of the projected matrix.

Hμν

Exercise: Consider an arbitrary Aμν matrix for a wave moving in the
+x direction. Use the above steps to determine the transverse-traceless
version of this matrix for that direction.



Source Luminosities:
TT gauge for arbitrary directions
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operations in 3-tensor form that will give the correct components in
any (rotated) coordinate system.
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plane perpendicular to a unit vector      :     ⃗n

that the quantity inside the brackets is a scalar with respect to rotations in 3-space, and therefore will not
depend on what direction the waves are moving, as long as we are in transverse-traceless gauge for whatever
direction that is.
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5.4.2 Exercise: Why is Energy Flux = Energy Density?

Explain physically why a gravitational wave energy flux should have the same magnitude as the gravitational
wave energy density in units where c = 1. (Hint: Consider a surface of area A perpendicular to the wave.
What volume of gravitational wave energy will go through that area in a time interval �t?)
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hḣTT

jk

ḣjk

TT

i = TGW

tt

(!) (5.64)

5.4.2 Exercise: Why is Energy Flux = Energy Density?

Explain physically why a gravitational wave energy flux should have the same magnitude as the gravitational
wave energy density in units where c = 1. (Hint: Consider a surface of area A perpendicular to the wave.
What volume of gravitational wave energy will go through that area in a time interval �t?)

5.5 Source Luminosities.

We now know how to calculate the gravitational waves moving in the +z direction generated by a given
source, and we also know how to calculate the energy flux involved in such waves. This should give us what
we need to know to calculate the total luminosity of a gravitational wave source, right?

The remaining problem is that gravitational waves from a given source will be radiated in all directions,
and right now we only know how to calculate the transverse-traceless components for a wave moving in
the +z direction. We need to find how to find the components transverse-traceless components for a wave
moving in an arbitrary direction ~n in a fixed coordinate system.

Conceptually, this is actually not di�cult. We saw that for waves moving in the +z direction, we are
able to simply project the the solution Hµ⌫ onto a spatial plane perpendicular to the direction of motion,
and then subtract an equal portion of the matrix’s remaining trace from every nonzero diagonal element (to
make the matrix traceless). It is actually quite easy to do this for a direction parallel to any coordinate axis.

5.5.1 Exercise. TT Components for the +x Direction.

Consider an arbitrary amplitude matrix of the form Aµ⌫ for a gravitational wave moving in the +x direction.
Using the operations described above, find the Aµ⌫

TT

components for that wave.

The trick to doing this for an arbitrary direction ~n is to express these operations in terms of 3-tensor
operators that will therefore give the correct components in any coordinate system rotated with respect to
our base system. It turns out that the tensor operator

P i

j

⌘ �i
j

� nin
j

(5.65)

(which, please note, is constructed entirely of 3-tensors) will project a vector on the plane perpendicular to
the unit vector ~n. When ~n is a unit vector in the z direction, this projection tensor has the value

P i

j

=

2

4
1 0 0
0 1 0
0 0 1

3

5�

2

4
0 0 0
0 0 0
0 0 1

3

5 =

2

4
1 0 0
0 1 0
0 0 0

3

5 (5.66)

which should certainly do the job.
So since a second-rank tensor ought to behave like the tensor product of two vectors, the projection of a

3-tensor (say Iij) should be simply P i

m

P j

n

Imn. Finally, the trace of the projected matrix should be

I = ⌘
lk

(P l

m

P k

n

Imn) = P
mk

P k

n

Imn = (⌘
mk

� n
m

n
k

)(�k
n

� nkn
m

)Imn

= (⌘
mn

� n
m

n
n

� n
m

n
n

+ n
m

n
k

nkn
n

)Imn = (⌘
mn

� n
m

n
n

)Imn = P
mn

Imn (5.67)

since nkn
k

= ~n ⇧ ~n = 1. (Remember that in this e↵ectively flat spacetime, raising and lowering spatial
indices does nothing: n

i

= ⌘
ij

nj = (+1)ni.) Multiplying half of this times the projection matrix itself
should be a matrix having nonzero diagonal elements perpendicular to ~n that are both half the trace of

12

Since a second-rank tensor ought to behave like the tensor product of 
two vectors, the projection of 3-tensor ought to be                    .  

that the quantity inside the brackets is a scalar with respect to rotations in 3-space, and therefore will not
depend on what direction the waves are moving, as long as we are in transverse-traceless gauge for whatever
direction that is.

Finally, the gravitational wave energy flux (energy per unit time per unit area) in the z direction is

T tz

GW

= �TGW

tz

= +
hR(2)

tz

i
8⇡G

= �hR(2)
tt

i
8⇡G

=
1

32⇡G
hḣTT
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Explain physically why a gravitational wave energy flux should have the same magnitude as the gravitational
wave energy density in units where c = 1. (Hint: Consider a surface of area A perpendicular to the wave.
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We now know how to calculate the gravitational waves moving in the +z direction generated by a given
source, and we also know how to calculate the energy flux involved in such waves. This should give us what
we need to know to calculate the total luminosity of a gravitational wave source, right?

The remaining problem is that gravitational waves from a given source will be radiated in all directions,
and right now we only know how to calculate the transverse-traceless components for a wave moving in
the +z direction. We need to find how to find the components transverse-traceless components for a wave
moving in an arbitrary direction ~n in a fixed coordinate system.

Conceptually, this is actually not di�cult. We saw that for waves moving in the +z direction, we are
able to simply project the the solution Hµ⌫ onto a spatial plane perpendicular to the direction of motion,
and then subtract an equal portion of the matrix’s remaining trace from every nonzero diagonal element (to
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Source Luminosities:
TT gauge for arbitrary directions
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that the quantity inside the brackets is a scalar with respect to rotations in 3-space, and therefore will not
depend on what direction the waves are moving, as long as we are in transverse-traceless gauge for whatever
direction that is.
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wave energy density in units where c = 1. (Hint: Consider a surface of area A perpendicular to the wave.
What volume of gravitational wave energy will go through that area in a time interval �t?)
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We now know how to calculate the gravitational waves moving in the +z direction generated by a given
source, and we also know how to calculate the energy flux involved in such waves. This should give us what
we need to know to calculate the total luminosity of a gravitational wave source, right?

The remaining problem is that gravitational waves from a given source will be radiated in all directions,
and right now we only know how to calculate the transverse-traceless components for a wave moving in
the +z direction. We need to find how to find the components transverse-traceless components for a wave
moving in an arbitrary direction ~n in a fixed coordinate system.

Conceptually, this is actually not di�cult. We saw that for waves moving in the +z direction, we are
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and then subtract an equal portion of the matrix’s remaining trace from every nonzero diagonal element (to
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So the complete transformation ought to be:
the projected tensor. If we then subtract this from the transformed tensor, we should have the transverse-
traceless components. So the complete transformation operator should be
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The energy flux of a gravitational wave in an arbitrary direction is hḣjk
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i/32⇡G, and we also know

that hij

TT

= (2GM/R)�̈I ij

TT

. Substituting the latter into the former yields
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for the flux in a particular direction (note the triple time-derivative of the reduced quadrupole moment
tensor!). We can now substitute in equation 5.68 to show (after a lot of work) that
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The advantage of this equation is that we can calculate the reduced quadrupole moment tensor in whatever
coordinate system we want, and calculate the flux of gravitational waves in any direction that we want.

We can find the total energy radiated by the source by computing the energy radiated per unit time
through a di↵erential area element dA = R2 sin ✓ d✓ d� on the surface of a sphere of radius R much larger
than the source in a direction specified by the unit 3-vector ~n whose components are nx = sin ✓ cos�, ny =
sin ✓ sin�, and nz = cos ✓, and then integrating that result over the entire sphere. The energy radiated
through the area element is simply the flux times dA, so the integral will yield the rate at which the source
is radiating. This in turn should be equal to the rate at which the source’s total energy E is decreasing due
to the energy carried away by gravitational radiation. So in summary, we have
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Now, in the last expression, the components of the reduced quadrupole moment tensor �
...
I ij depend only

on the orientation and behavior of the source in our coordinate system: they have nothing to to with the
direction ~n that we are integrating over. Therefore, we can split this integral up into three parts and pull
the terms involving the quadrupole moment tensor out in front of the integral:
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Each remaining integral is simply a number whose value may depend on the choice of indices, but which is
relatively easy to evaluate. When all the dust settles, the result is simply
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This is an important and useful result.

5.6 Gravitational Waves from Binary Stars.

The most common cosmic sources of gravitational waves are binary systems. As a first approximation, let’s
treat the binary system as a pair of point masses m1 and m2 � m1 separated by a fixed distance D. Let’s
set up a coordinate system so that the plane of the system’s rotation is the xy plane. The orbital radii of
the two masses are then

r1 =

✓
m2

m1 +m2

◆
D and r2 =

✓
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D (5.74)
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Each remaining integral is simply a number whose value may depend on the choice of indices, but which is
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This is an important and useful result.

5.6 Gravitational Waves from Binary Stars.

The most common cosmic sources of gravitational waves are binary systems. As a first approximation, let’s
treat the binary system as a pair of point masses m1 and m2 � m1 separated by a fixed distance D. Let’s
set up a coordinate system so that the plane of the system’s rotation is the xy plane. The orbital radii of
the two masses are then
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and we also know that:

the projected tensor. If we then subtract this from the transformed tensor, we should have the transverse-
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for the flux in a particular direction (note the triple time-derivative of the reduced quadrupole moment
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The advantage of this equation is that we can calculate the reduced quadrupole moment tensor in whatever
coordinate system we want, and calculate the flux of gravitational waves in any direction that we want.

We can find the total energy radiated by the source by computing the energy radiated per unit time
through a di↵erential area element dA = R2 sin ✓ d✓ d� on the surface of a sphere of radius R much larger
than the source in a direction specified by the unit 3-vector ~n whose components are nx = sin ✓ cos�, ny =
sin ✓ sin�, and nz = cos ✓, and then integrating that result over the entire sphere. The energy radiated
through the area element is simply the flux times dA, so the integral will yield the rate at which the source
is radiating. This in turn should be equal to the rate at which the source’s total energy E is decreasing due
to the energy carried away by gravitational radiation. So in summary, we have
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Now, in the last expression, the components of the reduced quadrupole moment tensor �
...
I ij depend only

on the orientation and behavior of the source in our coordinate system: they have nothing to to with the
direction ~n that we are integrating over. Therefore, we can split this integral up into three parts and pull
the terms involving the quadrupole moment tensor out in front of the integral:
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Each remaining integral is simply a number whose value may depend on the choice of indices, but which is
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So flux in a given direction is:
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The advantage of this equation is that we can calculate the reduced quadrupole moment tensor in whatever
coordinate system we want, and calculate the flux of gravitational waves in any direction that we want.

We can find the total energy radiated by the source by computing the energy radiated per unit time
through a di↵erential area element dA = R2 sin ✓ d✓ d� on the surface of a sphere of radius R much larger
than the source in a direction specified by the unit 3-vector ~n whose components are nx = sin ✓ cos�, ny =
sin ✓ sin�, and nz = cos ✓, and then integrating that result over the entire sphere. The energy radiated
through the area element is simply the flux times dA, so the integral will yield the rate at which the source
is radiating. This in turn should be equal to the rate at which the source’s total energy E is decreasing due
to the energy carried away by gravitational radiation. So in summary, we have
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Now, in the last expression, the components of the reduced quadrupole moment tensor �
...
I ij depend only

on the orientation and behavior of the source in our coordinate system: they have nothing to to with the
direction ~n that we are integrating over. Therefore, we can split this integral up into three parts and pull
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Each remaining integral is simply a number whose value may depend on the choice of indices, but which is
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This is an important and useful result.
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The most common cosmic sources of gravitational waves are binary systems. As a first approximation, let’s
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Using the above (and lots of work) yields
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for the flux in a particular direction (note the triple time-derivative of the reduced quadrupole moment
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The advantage of this equation is that we can calculate the reduced quadrupole moment tensor in whatever
coordinate system we want, and calculate the flux of gravitational waves in any direction that we want.

We can find the total energy radiated by the source by computing the energy radiated per unit time
through a di↵erential area element dA = R2 sin ✓ d✓ d� on the surface of a sphere of radius R much larger
than the source in a direction specified by the unit 3-vector ~n whose components are nx = sin ✓ cos�, ny =
sin ✓ sin�, and nz = cos ✓, and then integrating that result over the entire sphere. The energy radiated
through the area element is simply the flux times dA, so the integral will yield the rate at which the source
is radiating. This in turn should be equal to the rate at which the source’s total energy E is decreasing due
to the energy carried away by gravitational radiation. So in summary, we have
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Now, in the last expression, the components of the reduced quadrupole moment tensor �
...
I ij depend only

on the orientation and behavior of the source in our coordinate system: they have nothing to to with the
direction ~n that we are integrating over. Therefore, we can split this integral up into three parts and pull
the terms involving the quadrupole moment tensor out in front of the integral:
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Each remaining integral is simply a number whose value may depend on the choice of indices, but which is
relatively easy to evaluate. When all the dust settles, the result is simply
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This is an important and useful result.

5.6 Gravitational Waves from Binary Stars.

The most common cosmic sources of gravitational waves are binary systems. As a first approximation, let’s
treat the binary system as a pair of point masses m1 and m2 � m1 separated by a fixed distance D. Let’s
set up a coordinate system so that the plane of the system’s rotation is the xy plane. The orbital radii of
the two masses are then
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Source Luminosities:
Integrating over all directions
To get the total luminosity, we integrate over all directions:

the projected tensor. If we then subtract this from the transformed tensor, we should have the transverse-
traceless components. So the complete transformation operator should be
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for the flux in a particular direction (note the triple time-derivative of the reduced quadrupole moment
tensor!). We can now substitute in equation 5.68 to show (after a lot of work) that
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The advantage of this equation is that we can calculate the reduced quadrupole moment tensor in whatever
coordinate system we want, and calculate the flux of gravitational waves in any direction that we want.

We can find the total energy radiated by the source by computing the energy radiated per unit time
through a di↵erential area element dA = R2 sin ✓ d✓ d� on the surface of a sphere of radius R much larger
than the source in a direction specified by the unit 3-vector ~n whose components are nx = sin ✓ cos�, ny =
sin ✓ sin�, and nz = cos ✓, and then integrating that result over the entire sphere. The energy radiated
through the area element is simply the flux times dA, so the integral will yield the rate at which the source
is radiating. This in turn should be equal to the rate at which the source’s total energy E is decreasing due
to the energy carried away by gravitational radiation. So in summary, we have
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Now, in the last expression, the components of the reduced quadrupole moment tensor �
...
I ij depend only

on the orientation and behavior of the source in our coordinate system: they have nothing to to with the
direction ~n that we are integrating over. Therefore, we can split this integral up into three parts and pull
the terms involving the quadrupole moment tensor out in front of the integral:
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Each remaining integral is simply a number whose value may depend on the choice of indices, but which is
relatively easy to evaluate. When all the dust settles, the result is simply
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This is an important and useful result.

5.6 Gravitational Waves from Binary Stars.

The most common cosmic sources of gravitational waves are binary systems. As a first approximation, let’s
treat the binary system as a pair of point masses m1 and m2 � m1 separated by a fixed distance D. Let’s
set up a coordinate system so that the plane of the system’s rotation is the xy plane. The orbital radii of
the two masses are then
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The quadrupole moment tensor does not depend on the wave direction:

the projected tensor. If we then subtract this from the transformed tensor, we should have the transverse-
traceless components. So the complete transformation operator should be
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for the flux in a particular direction (note the triple time-derivative of the reduced quadrupole moment
tensor!). We can now substitute in equation 5.68 to show (after a lot of work) that
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The advantage of this equation is that we can calculate the reduced quadrupole moment tensor in whatever
coordinate system we want, and calculate the flux of gravitational waves in any direction that we want.

We can find the total energy radiated by the source by computing the energy radiated per unit time
through a di↵erential area element dA = R2 sin ✓ d✓ d� on the surface of a sphere of radius R much larger
than the source in a direction specified by the unit 3-vector ~n whose components are nx = sin ✓ cos�, ny =
sin ✓ sin�, and nz = cos ✓, and then integrating that result over the entire sphere. The energy radiated
through the area element is simply the flux times dA, so the integral will yield the rate at which the source
is radiating. This in turn should be equal to the rate at which the source’s total energy E is decreasing due
to the energy carried away by gravitational radiation. So in summary, we have
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Now, in the last expression, the components of the reduced quadrupole moment tensor �
...
I ij depend only

on the orientation and behavior of the source in our coordinate system: they have nothing to to with the
direction ~n that we are integrating over. Therefore, we can split this integral up into three parts and pull
the terms involving the quadrupole moment tensor out in front of the integral:
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Each remaining integral is simply a number whose value may depend on the choice of indices, but which is
relatively easy to evaluate. When all the dust settles, the result is simply
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This is an important and useful result.

5.6 Gravitational Waves from Binary Stars.

The most common cosmic sources of gravitational waves are binary systems. As a first approximation, let’s
treat the binary system as a pair of point masses m1 and m2 � m1 separated by a fixed distance D. Let’s
set up a coordinate system so that the plane of the system’s rotation is the xy plane. The orbital radii of
the two masses are then
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Each integral is just a number that depends on the index values.
When all is done: 

the projected tensor. If we then subtract this from the transformed tensor, we should have the transverse-
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for the flux in a particular direction (note the triple time-derivative of the reduced quadrupole moment
tensor!). We can now substitute in equation 5.68 to show (after a lot of work) that
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The advantage of this equation is that we can calculate the reduced quadrupole moment tensor in whatever
coordinate system we want, and calculate the flux of gravitational waves in any direction that we want.

We can find the total energy radiated by the source by computing the energy radiated per unit time
through a di↵erential area element dA = R2 sin ✓ d✓ d� on the surface of a sphere of radius R much larger
than the source in a direction specified by the unit 3-vector ~n whose components are nx = sin ✓ cos�, ny =
sin ✓ sin�, and nz = cos ✓, and then integrating that result over the entire sphere. The energy radiated
through the area element is simply the flux times dA, so the integral will yield the rate at which the source
is radiating. This in turn should be equal to the rate at which the source’s total energy E is decreasing due
to the energy carried away by gravitational radiation. So in summary, we have
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Now, in the last expression, the components of the reduced quadrupole moment tensor �
...
I ij depend only

on the orientation and behavior of the source in our coordinate system: they have nothing to to with the
direction ~n that we are integrating over. Therefore, we can split this integral up into three parts and pull
the terms involving the quadrupole moment tensor out in front of the integral:
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Each remaining integral is simply a number whose value may depend on the choice of indices, but which is
relatively easy to evaluate. When all the dust settles, the result is simply

�dE

dt
=

G

5
h�
...
I

ij�
...
I

ij

i (5.73)

This is an important and useful result.

5.6 Gravitational Waves from Binary Stars.

The most common cosmic sources of gravitational waves are binary systems. As a first approximation, let’s
treat the binary system as a pair of point masses m1 and m2 � m1 separated by a fixed distance D. Let’s
set up a coordinate system so that the plane of the system’s rotation is the xy plane. The orbital radii of
the two masses are then

r1 =
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D and r2 =
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D (5.74)
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for the flux in a particular direction (note the triple time-derivative of the reduced quadrupole moment
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The advantage of this equation is that we can calculate the reduced quadrupole moment tensor in whatever
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respectively. (Note that r1/r2 = m2/m1, which is appropriate if these are distances from the center of mass
at the origin, and also that r1 + r2 = D.) Let’s also define t = 0 to be the instant when mass m1 crosses the
+x axis. Then the coordinates x1, y1 and x2, y2 at an arbitrary time t are

x1 = r1 cos!t =
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So our quadrupole moment tensor becomes
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3 .) The double-time derivative of this is
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This matrix already happens to be in transverse-traceless gauge for radiation in the +z direction, so for an
observer in the +z direction and a distance R from the system’s center of mass, the metric perturbation is
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Note that A+ = A⇥ = �4GM⌘D2!2/R, so this wave has equal amounts of plus and cross polarization. Also
note the plus and cross polarizations are 90� out of phase, implying that wave is circularly polarized (the
ring-distortion ellipse will rotate counterclockwise instead of oscillating in and out). Finally note that the
wave has a frequency that is twice the orbital frequency of the system.

To find the gravitational waves radiated in another direction, we can use the general projection operator
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or in simple cases, we can just carry out the operations by eye. For example, the expression for the case of
waves moving in the +x direction is simply
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=
2GM⌘D2!2
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4
0 0 0
0 cos 2!(t�R) 0
0 0 � cos 2!(t�R)

3

5 (5.83)

This wave is purely plus-polarized and A+ has half the magnitude it had for waves moving in the +z direction.
This result is important, because many of the binaries we know about are eclipsing binaries, so we will be
viewing such binaries from this angle.

14

So components of the reduced quadrupole moment tensor are:

respectively. (Note that r1/r2 = m2/m1, which is appropriate if these are distances from the center of mass
at the origin, and also that r1 + r2 = D.) Let’s also define t = 0 to be the instant when mass m1 crosses the
+x axis. Then the coordinates x1, y1 and x2, y2 at an arbitrary time t are

x1 = r1 cos!t =
m2D

m1 +m2
cos!t and y1 = r1 sin!t =

m2D

m1 +m2
sin!t (5.75a)

x2 = �r2 cos!t = � m1D

m1 +m2
cos!t and y2 = �r2 sin!t = � m1D

m1 +m2
sin!t (5.75b)

where ! is the orbital angular frequency. Components of the reduced quadrupole moment tensor are therefore

�I xx =

Z

src
⇢(x2 � 1

3⌘
xxr2) dV = m1(x

2
1 � 1

3r
2
1) +m2(x

2
2 � 1

3r
2
2) = (m1r

2
1 +m2r

2
2)(cos

2 !t� 1
3 ) (5.76a)

�I xy =

Z

src
⇢(xy � 1

3⌘
xyr2) dV = m1(x1y1 � 0) +m2(x2y2 � 0) = (m1r

2
1 +m2r

2
2) cos!t sin!t (5.76b)

Similarly, �I yy = (m1r
2
1 +m2r

2
2)(sin

2 !t� 1
3 ),�I

zz = 1
3 (m1r

2
1 +m2r

2
2) and all other �I ij = 0. We can simplify

this by using the double-angle trigonometric identities cos ✓ sin ✓ = 1
2 sin 2✓, cos

2 ✓ = 1
2 (1 + cos 2✓), and

sin2 ✓ = 1
2 (1� cos 2✓), as well as the definitions

⌘ ⌘ m1m2

(m1 +m2)2
and M ⌘ m1 +m2 (5.77)

Note also that

m1r
2
1 +m2r

2
2 = m1

✓
m2D

m1 +m2

◆2

+m2

✓
m1D

m1 +m2

◆2

=
m1m

2
2 +m2m

2
1

(m1 +m2)2
D2 =

m1m2D
2(m1 +m2)

(m1 +m2)2
= ⌘MD2 (5.78)

So our quadrupole moment tensor becomes

�I ij = 1
2M⌘D2

2

4
1
3 + cos 2!t sin 2!t 0
sin 2!t 1

3 � cos 2!t 0
0 0 � 2

3

3

5 (5.79)

(Note that 1
2 � 1

3 = 1
6 = 1

2 · 1
3 .) The double-time derivative of this is

�̈I ij = �2M⌘D2!2

2

4
cos 2!t sin 2!t 0
sin 2!t � cos 2!t 0

0 0 0

3

5 (5.80)

This matrix already happens to be in transverse-traceless gauge for radiation in the +z direction, so for an
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note the plus and cross polarizations are 90� out of phase, implying that wave is circularly polarized (the
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or in simple cases, we can just carry out the operations by eye. For example, the expression for the case of
waves moving in the +x direction is simply
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This wave is purely plus-polarized and A+ has half the magnitude it had for waves moving in the +z direction.
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viewing such binaries from this angle.
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This matrix already happens to be in transverse-traceless gauge for radiation in the +z direction, so for an
observer in the +z direction and a distance R from the system’s center of mass, the metric perturbation is
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Note that A+ = A⇥ = �4GM⌘D2!2/R, so this wave has equal amounts of plus and cross polarization. Also
note the plus and cross polarizations are 90� out of phase, implying that wave is circularly polarized (the
ring-distortion ellipse will rotate counterclockwise instead of oscillating in and out). Finally note that the
wave has a frequency that is twice the orbital frequency of the system.
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or in simple cases, we can just carry out the operations by eye. For example, the expression for the case of
waves moving in the +x direction is simply
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This wave is purely plus-polarized and A+ has half the magnitude it had for waves moving in the +z direction.
This result is important, because many of the binaries we know about are eclipsing binaries, so we will be
viewing such binaries from this angle.
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Gravitational Waves from Binaries:
The Gravitational Waves
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This matrix already happens to be in transverse-traceless gauge for radiation in the +z direction, so for an
observer in the +z direction and a distance R from the system’s center of mass, the metric perturbation is
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Note that A+ = A⇥ = �4GM⌘D2!2/R, so this wave has equal amounts of plus and cross polarization. Also
note the plus and cross polarizations are 90� out of phase, implying that wave is circularly polarized (the
ring-distortion ellipse will rotate counterclockwise instead of oscillating in and out). Finally note that the
wave has a frequency that is twice the orbital frequency of the system.
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or in simple cases, we can just carry out the operations by eye. For example, the expression for the case of
waves moving in the +x direction is simply

hij

TT

=
2GM⌘D2!2

R

2

4
0 0 0
0 cos 2!(t�R) 0
0 0 � cos 2!(t�R)

3

5 (5.83)

This wave is purely plus-polarized and A+ has half the magnitude it had for waves moving in the +z direction.
This result is important, because many of the binaries we know about are eclipsing binaries, so we will be
viewing such binaries from this angle.
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This matrix already happens to be in transverse-traceless gauge for radiation in the +z direction, so for an
observer in the +z direction and a distance R from the system’s center of mass, the metric perturbation is
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Note that A+ = A⇥ = �4GM⌘D2!2/R, so this wave has equal amounts of plus and cross polarization. Also
note the plus and cross polarizations are 90� out of phase, implying that wave is circularly polarized (the
ring-distortion ellipse will rotate counterclockwise instead of oscillating in and out). Finally note that the
wave has a frequency that is twice the orbital frequency of the system.

To find the gravitational waves radiated in another direction, we can use the general projection operator
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or in simple cases, we can just carry out the operations by eye. For example, the expression for the case of
waves moving in the +x direction is simply

hij

TT

=
2GM⌘D2!2

R

2

4
0 0 0
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This wave is purely plus-polarized and A+ has half the magnitude it had for waves moving in the +z direction.
This result is important, because many of the binaries we know about are eclipsing binaries, so we will be
viewing such binaries from this angle.
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Exercise: verify this by applying the steps:
(1)   Project         given below onto the plane perpendicular to the x direction
(2)   Calculate the trace of the remaining components
(3)   Subtract half the trace from each unaffected diagonal element
(4)   Evaluate the wave at the retarded time.
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This matrix already happens to be in transverse-traceless gauge for radiation in the +z direction, so for an
observer in the +z direction and a distance R from the system’s center of mass, the metric perturbation is
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Note that A+ = A⇥ = �4GM⌘D2!2/R, so this wave has equal amounts of plus and cross polarization. Also
note the plus and cross polarizations are 90� out of phase, implying that wave is circularly polarized (the
ring-distortion ellipse will rotate counterclockwise instead of oscillating in and out). Finally note that the
wave has a frequency that is twice the orbital frequency of the system.
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or in simple cases, we can just carry out the operations by eye. For example, the expression for the case of
waves moving in the +x direction is simply

hij

TT

=
2GM⌘D2!2

R

2

4
0 0 0
0 cos 2!(t�R) 0
0 0 � cos 2!(t�R)

3

5 (5.83)

This wave is purely plus-polarized and A+ has half the magnitude it had for waves moving in the +z direction.
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respectively. (Note that r1/r2 = m2/m1, which is appropriate if these are distances from the center of mass
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This matrix already happens to be in transverse-traceless gauge for radiation in the +z direction, so for an
observer in the +z direction and a distance R from the system’s center of mass, the metric perturbation is
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Note that A+ = A⇥ = �4GM⌘D2!2/R, so this wave has equal amounts of plus and cross polarization. Also
note the plus and cross polarizations are 90� out of phase, implying that wave is circularly polarized (the
ring-distortion ellipse will rotate counterclockwise instead of oscillating in and out). Finally note that the
wave has a frequency that is twice the orbital frequency of the system.

To find the gravitational waves radiated in another direction, we can use the general projection operator

�̈I jk

TT

= (P i

m

P j

n

� 1
2P

ijP
mn

)�̈I jk with P i

j

= �i
j

� nin
j

(5.82)

or in simple cases, we can just carry out the operations by eye. For example, the expression for the case of
waves moving in the +x direction is simply
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This wave is purely plus-polarized and A+ has half the magnitude it had for waves moving in the +z direction.
This result is important, because many of the binaries we know about are eclipsing binaries, so we will be
viewing such binaries from this angle.
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Gravitational Waves from Binaries:
Total Luminosity
The binary’s gravitational wave luminosity is:

5.6.1 Exercise: TT Components by Eye

Arrive at equation 5.83 by applying the following steps: (1) Project �¨I jk

given in equation 5.80 onto the

plane perpendicular to the x direction, (2) calculate the trace of the remaining components, (3) subtract half

the trace from each diagonal element not a↵ected by the projection, and (4) evaluate at the retarded time.

The other point that you ought to take away from this example is that both the amplitude of the wave

and the relative magnitudes of its polarizations will depend on your viewing angle.

The total power radiated in all directions is given by
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Note the astonishing 6th-power dependence of this energy loss on the rotational frequency!

5.6.2 Exercise: The Energy Loss Formula.

You can actually derive this result pretty easily from equation 5.80. Explain how. In particular, where does

the factor of 32 come from?

Finally, let’s see what e↵ect this has on the system itself. Assume that the stars move slowly enough that

their velocities are non-relativistic, and that they are far enough apart that Newtonian gravitational theory

is adequate to predict their motion. Newton’s second law applied to the star with mass m1 tells us that
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We can use this to eliminate the usually unmeasurable quantity D in favor of the much more easily measured

orbital frequency !. Substituting this back into the luminosity equation gives
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This shows that the rate of energy loss increases dramatically as the system’s total mass increases and/or

its orbital frequency increases.

This energy must come at the expense of the system’s orbital energy which one can show is equal to
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We see that stars in the binary pair will maintain neither a fixed separation D nor a constant angular

frequency !, as assumed in the derivation: rather ! will increase with time (and D will decrease) as the

binary’s orbital energy is radiated away. This means that the calculations we have made are not quite right:

for example, our calculation for �¨I ij

is not exact because we are ignoring the time dependence of both D
and !. However, as long as the energy leaks away only very slowly, we are justified in ignoring these time

derivatives.

One way to quantify how “slowly” the energy is radiated is to calculate the time rate of change of the

orbit’s period T = 2⇡/!. Note that since
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Therefore, the orbital period’s time rate of change is
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Note that in general, unless the objects are actually coalescing, the orbit’s period T in meters of light travel

time for a typical binary pair will be very large compared to GM for the pair, so GM! / GM/T will be

very small. This justifies our approximation that D and ! are approximately constant.
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Exercise:  We can derive this pretty easily from the equation below:
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So our quadrupole moment tensor becomes
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(Note that 1
2 � 1

3 = 1
6 = 1

2 · 1
3 .) The double-time derivative of this is
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This matrix already happens to be in transverse-traceless gauge for radiation in the +z direction, so for an
observer in the +z direction and a distance R from the system’s center of mass, the metric perturbation is
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Note that A+ = A⇥ = �4GM⌘D2!2/R, so this wave has equal amounts of plus and cross polarization. Also
note the plus and cross polarizations are 90� out of phase, implying that wave is circularly polarized (the
ring-distortion ellipse will rotate counterclockwise instead of oscillating in and out). Finally note that the
wave has a frequency that is twice the orbital frequency of the system.

To find the gravitational waves radiated in another direction, we can use the general projection operator
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or in simple cases, we can just carry out the operations by eye. For example, the expression for the case of
waves moving in the +x direction is simply
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This wave is purely plus-polarized and A+ has half the magnitude it had for waves moving in the +z direction.
This result is important, because many of the binaries we know about are eclipsing binaries, so we will be
viewing such binaries from this angle.

14

Do it. In particular, where does the 32 come from?



Gravitational Waves from Binaries:
Effects of the Energy Loss
What effect does this have on the system itself? Newton’s second law:

5.6.1 Exercise: TT Components by Eye

Arrive at equation 5.83 by applying the following steps: (1) Project �¨I jk

given in equation 5.80 onto the

plane perpendicular to the x direction, (2) calculate the trace of the remaining components, (3) subtract half

the trace from each diagonal element not a↵ected by the projection, and (4) evaluate at the retarded time.

The other point that you ought to take away from this example is that both the amplitude of the wave

and the relative magnitudes of its polarizations will depend on your viewing angle.

The total power radiated in all directions is given by
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Note the astonishing 6th-power dependence of this energy loss on the rotational frequency!

5.6.2 Exercise: The Energy Loss Formula.

You can actually derive this result pretty easily from equation 5.80. Explain how. In particular, where does

the factor of 32 come from?

Finally, let’s see what e↵ect this has on the system itself. Assume that the stars move slowly enough that

their velocities are non-relativistic, and that they are far enough apart that Newtonian gravitational theory

is adequate to predict their motion. Newton’s second law applied to the star with mass m1 tells us that
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We can use this to eliminate the usually unmeasurable quantity D in favor of the much more easily measured

orbital frequency !. Substituting this back into the luminosity equation gives
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This shows that the rate of energy loss increases dramatically as the system’s total mass increases and/or

its orbital frequency increases.

This energy must come at the expense of the system’s orbital energy which one can show is equal to
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We see that stars in the binary pair will maintain neither a fixed separation D nor a constant angular

frequency !, as assumed in the derivation: rather ! will increase with time (and D will decrease) as the

binary’s orbital energy is radiated away. This means that the calculations we have made are not quite right:

for example, our calculation for �¨I ij

is not exact because we are ignoring the time dependence of both D
and !. However, as long as the energy leaks away only very slowly, we are justified in ignoring these time

derivatives.

One way to quantify how “slowly” the energy is radiated is to calculate the time rate of change of the

orbit’s period T = 2⇡/!. Note that since
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Therefore, the orbital period’s time rate of change is
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Note that in general, unless the objects are actually coalescing, the orbit’s period T in meters of light travel

time for a typical binary pair will be very large compared to GM for the pair, so GM! / GM/T will be

very small. This justifies our approximation that D and ! are approximately constant.
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the trace from each diagonal element not a↵ected by the projection, and (4) evaluate at the retarded time.

The other point that you ought to take away from this example is that both the amplitude of the wave

and the relative magnitudes of its polarizations will depend on your viewing angle.
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Note the astonishing 6th-power dependence of this energy loss on the rotational frequency!
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This shows that the rate of energy loss increases dramatically as the system’s total mass increases and/or

its orbital frequency increases.

This energy must come at the expense of the system’s orbital energy which one can show is equal to
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We see that stars in the binary pair will maintain neither a fixed separation D nor a constant angular

frequency !, as assumed in the derivation: rather ! will increase with time (and D will decrease) as the

binary’s orbital energy is radiated away. This means that the calculations we have made are not quite right:

for example, our calculation for �¨I ij

is not exact because we are ignoring the time dependence of both D
and !. However, as long as the energy leaks away only very slowly, we are justified in ignoring these time

derivatives.

One way to quantify how “slowly” the energy is radiated is to calculate the time rate of change of the
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Therefore, the orbital period’s time rate of change is
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Note that in general, unless the objects are actually coalescing, the orbit’s period T in meters of light travel

time for a typical binary pair will be very large compared to GM for the pair, so GM! / GM/T will be

very small. This justifies our approximation that D and ! are approximately constant.
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Energy comes at the expense of orbital energy, which is:
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the trace from each diagonal element not a↵ected by the projection, and (4) evaluate at the retarded time.

The other point that you ought to take away from this example is that both the amplitude of the wave

and the relative magnitudes of its polarizations will depend on your viewing angle.
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Note the astonishing 6th-power dependence of this energy loss on the rotational frequency!
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We can use this to eliminate the usually unmeasurable quantity D in favor of the much more easily measured

orbital frequency !. Substituting this back into the luminosity equation gives
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This shows that the rate of energy loss increases dramatically as the system’s total mass increases and/or

its orbital frequency increases.

This energy must come at the expense of the system’s orbital energy which one can show is equal to
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We see that stars in the binary pair will maintain neither a fixed separation D nor a constant angular

frequency !, as assumed in the derivation: rather ! will increase with time (and D will decrease) as the

binary’s orbital energy is radiated away. This means that the calculations we have made are not quite right:

for example, our calculation for �¨I ij

is not exact because we are ignoring the time dependence of both D
and !. However, as long as the energy leaks away only very slowly, we are justified in ignoring these time

derivatives.

One way to quantify how “slowly” the energy is radiated is to calculate the time rate of change of the

orbit’s period T = 2⇡/!. Note that since
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Therefore, the orbital period’s time rate of change is
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Note that in general, unless the objects are actually coalescing, the orbit’s period T in meters of light travel

time for a typical binary pair will be very large compared to GM for the pair, so GM! / GM/T will be

very small. This justifies our approximation that D and ! are approximately constant.
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Our circular orbit approximation is not good if spiraling-in 
happens too fast!

2



Gravitational Waves from Binaries:
Effects of the Energy Loss
One way of quantifying what “too fast” means: calculate dT/dt.  Note

5.6.1 Exercise: TT Components by Eye

Arrive at equation 5.83 by applying the following steps: (1) Project �¨I jk

given in equation 5.80 onto the

plane perpendicular to the x direction, (2) calculate the trace of the remaining components, (3) subtract half

the trace from each diagonal element not a↵ected by the projection, and (4) evaluate at the retarded time.

The other point that you ought to take away from this example is that both the amplitude of the wave

and the relative magnitudes of its polarizations will depend on your viewing angle.

The total power radiated in all directions is given by
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Note the astonishing 6th-power dependence of this energy loss on the rotational frequency!

5.6.2 Exercise: The Energy Loss Formula.

You can actually derive this result pretty easily from equation 5.80. Explain how. In particular, where does

the factor of 32 come from?

Finally, let’s see what e↵ect this has on the system itself. Assume that the stars move slowly enough that

their velocities are non-relativistic, and that they are far enough apart that Newtonian gravitational theory

is adequate to predict their motion. Newton’s second law applied to the star with mass m1 tells us that
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We can use this to eliminate the usually unmeasurable quantity D in favor of the much more easily measured

orbital frequency !. Substituting this back into the luminosity equation gives
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This shows that the rate of energy loss increases dramatically as the system’s total mass increases and/or

its orbital frequency increases.

This energy must come at the expense of the system’s orbital energy which one can show is equal to
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We see that stars in the binary pair will maintain neither a fixed separation D nor a constant angular

frequency !, as assumed in the derivation: rather ! will increase with time (and D will decrease) as the

binary’s orbital energy is radiated away. This means that the calculations we have made are not quite right:

for example, our calculation for �¨I ij

is not exact because we are ignoring the time dependence of both D
and !. However, as long as the energy leaks away only very slowly, we are justified in ignoring these time

derivatives.

One way to quantify how “slowly” the energy is radiated is to calculate the time rate of change of the

orbit’s period T = 2⇡/!. Note that since
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Therefore, the orbital period’s time rate of change is

dT

dt
=

dT

d!

d!

dE

dE

dt
=

✓
�2⇡

!2

◆✓
� 3!1/3

M(GM)

2/3⌘

◆✓
�32⌘2

5G
(GM!)10/3

◆
=

192⇡⌘

5

(GM!)5/3 (5.89)

Note that in general, unless the objects are actually coalescing, the orbit’s period T in meters of light travel

time for a typical binary pair will be very large compared to GM for the pair, so GM! / GM/T will be

very small. This justifies our approximation that D and ! are approximately constant.
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Arrive at equation 5.83 by applying the following steps: (1) Project �¨I jk

given in equation 5.80 onto the

plane perpendicular to the x direction, (2) calculate the trace of the remaining components, (3) subtract half

the trace from each diagonal element not a↵ected by the projection, and (4) evaluate at the retarded time.

The other point that you ought to take away from this example is that both the amplitude of the wave

and the relative magnitudes of its polarizations will depend on your viewing angle.
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Note the astonishing 6th-power dependence of this energy loss on the rotational frequency!

5.6.2 Exercise: The Energy Loss Formula.

You can actually derive this result pretty easily from equation 5.80. Explain how. In particular, where does

the factor of 32 come from?

Finally, let’s see what e↵ect this has on the system itself. Assume that the stars move slowly enough that

their velocities are non-relativistic, and that they are far enough apart that Newtonian gravitational theory

is adequate to predict their motion. Newton’s second law applied to the star with mass m1 tells us that
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We can use this to eliminate the usually unmeasurable quantity D in favor of the much more easily measured
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This shows that the rate of energy loss increases dramatically as the system’s total mass increases and/or

its orbital frequency increases.

This energy must come at the expense of the system’s orbital energy which one can show is equal to
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We see that stars in the binary pair will maintain neither a fixed separation D nor a constant angular

frequency !, as assumed in the derivation: rather ! will increase with time (and D will decrease) as the

binary’s orbital energy is radiated away. This means that the calculations we have made are not quite right:

for example, our calculation for �¨I ij

is not exact because we are ignoring the time dependence of both D
and !. However, as long as the energy leaks away only very slowly, we are justified in ignoring these time

derivatives.

One way to quantify how “slowly” the energy is radiated is to calculate the time rate of change of the
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Note that in general, unless the objects are actually coalescing, the orbit’s period T in meters of light travel

time for a typical binary pair will be very large compared to GM for the pair, so GM! / GM/T will be

very small. This justifies our approximation that D and ! are approximately constant.
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given in equation 5.80 onto the

plane perpendicular to the x direction, (2) calculate the trace of the remaining components, (3) subtract half

the trace from each diagonal element not a↵ected by the projection, and (4) evaluate at the retarded time.
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Note the astonishing 6th-power dependence of this energy loss on the rotational frequency!

5.6.2 Exercise: The Energy Loss Formula.

You can actually derive this result pretty easily from equation 5.80. Explain how. In particular, where does

the factor of 32 come from?

Finally, let’s see what e↵ect this has on the system itself. Assume that the stars move slowly enough that

their velocities are non-relativistic, and that they are far enough apart that Newtonian gravitational theory

is adequate to predict their motion. Newton’s second law applied to the star with mass m1 tells us that
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We can use this to eliminate the usually unmeasurable quantity D in favor of the much more easily measured

orbital frequency !. Substituting this back into the luminosity equation gives
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This shows that the rate of energy loss increases dramatically as the system’s total mass increases and/or

its orbital frequency increases.

This energy must come at the expense of the system’s orbital energy which one can show is equal to
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We see that stars in the binary pair will maintain neither a fixed separation D nor a constant angular

frequency !, as assumed in the derivation: rather ! will increase with time (and D will decrease) as the

binary’s orbital energy is radiated away. This means that the calculations we have made are not quite right:

for example, our calculation for �¨I ij

is not exact because we are ignoring the time dependence of both D
and !. However, as long as the energy leaks away only very slowly, we are justified in ignoring these time

derivatives.

One way to quantify how “slowly” the energy is radiated is to calculate the time rate of change of the

orbit’s period T = 2⇡/!. Note that since
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Therefore, the orbital period’s time rate of change is
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Note that in general, unless the objects are actually coalescing, the orbit’s period T in meters of light travel

time for a typical binary pair will be very large compared to GM for the pair, so GM! / GM/T will be

very small. This justifies our approximation that D and ! are approximately constant.
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5.6.1 Exercise: TT Components by Eye

Arrive at equation 5.83 by applying the following steps: (1) Project �¨I jk

given in equation 5.80 onto the

plane perpendicular to the x direction, (2) calculate the trace of the remaining components, (3) subtract half

the trace from each diagonal element not a↵ected by the projection, and (4) evaluate at the retarded time.
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The total power radiated in all directions is given by

�dE

dt
=

G

5

h�
...

I
ij�
...

I
ij

i = 32(GM)

2⌘2D4!6

5G
(5.84)

Note the astonishing 6th-power dependence of this energy loss on the rotational frequency!
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We can use this to eliminate the usually unmeasurable quantity D in favor of the much more easily measured
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frequency !, as assumed in the derivation: rather ! will increase with time (and D will decrease) as the

binary’s orbital energy is radiated away. This means that the calculations we have made are not quite right:

for example, our calculation for �¨I ij

is not exact because we are ignoring the time dependence of both D
and !. However, as long as the energy leaks away only very slowly, we are justified in ignoring these time

derivatives.
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Note that in general, unless the objects are actually coalescing, the orbit’s period T in meters of light travel

time for a typical binary pair will be very large compared to GM for the pair, so GM! / GM/T will be

very small. This justifies our approximation that D and ! are approximately constant.

15

A di↵erent way of expressing how the energy loss a↵ects the orbit is to directly calculate the rate at
which the orbital frequency ! changes:
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We call the quantity M the “chirp mass” of the binary, in that at any given orbital frequency, the rate at
which the frequency increases is determined completely by M.

As an example, consider the binary pair known as HM Cancri (RX JO806.3+1527). This system consists
of two white-dwarf stars with masses of 0.55 M� and 0.27 M� (M = 1200 m, ⌘ = 0.149/0.822 = 0.22)
orbiting with a period of 321.53 s = 9.6⇥ 1010 m. The distance to this system is not well known but is
probably close to 16,000 ly = 1.5⇥ 1020 m. For this system, GM! = 7.9⇥ 10�8, and from that, one can
show that for this fairly face-on system (inclination angle 38�),

A+ ⇡ 4GM⌘D2!2

R
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R
(GM!)2/3 = 1.3⇥ 10�22 (5.91a)
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The gravitational wave power radiated by the system is fairly large: about 60 times the rate that the sun
radiates EM energy. However, this is such a small fraction of the system’s total energy that the rate of
change of the period is so small as to be di�cult to detect (1.2 ms per year). To detect waves from this
system, a gravitational wave detector would need to be able to measure fractional changes in the distance
between floating masses of at least 10�22 at a frequency of 2/321.53 s = 6.2mHz. The LIGO detector has
the appropriate sensitivity only in a frequency range of hundreds of Hz, not in this low frequency range.
But this system’s frequency is at the sweet spot for LISA, and would have a predicted signal-to-noise ratio
of better than 200 for a four-year observation period. This is one of about 50 candidate “LISA verification
binaries” detailed in a very recent paper. 2

Before 2015, the strongest evidence available for the existence of gravitational waves was observations of
the Hulse-Taylor binary system (PSR B1913+16), which includes a pulsar. Because a pulsar is an extraor-
dinarily good clock, one is able to infer this system’s orbital parameters to extraordinary accuracy from the
Doppler shifts of the pulsar’s signal. Though this system is complicated to analyze (because the orbit fairly
elliptical). This system has been observed for more than 40 years, and energy loss from this system over this
period is very clear, and the ratio of the observed loss to the accumulated loss predicted by general relativity
is currently 0.9983 ± 0.0016.3

5.6.3 Exercise: Power Radiated by HM Cnc.

Verify the power calculation given above. The value of G in units where c = 1 is 7.426⇥ 10�28 m/kg, and
after using this to get the radiated power in kg (of energy) per meter (of time), multiply the result by the
appropriate power of c to convert to watts. What is that power of c?

As you can see, these calculations assume a completely Newtonian source, an approximation that gets
worse and worse as a binary system approaches coalescence. In the HM Cancri system above, the speeds of
the orbiting white dwarfs are about 400 km/s = 0.0013c, so it is possible that relativistic e↵ects would be
measurable. To be able to better predict the waveforms from weakly-relativistic binary systems, a research
group associated with Luc Blanchet did calculations in the 1990s extending the work that we have rehearsed
here by calculating correction terms to higher orders in v/c. This leads to a “Post-Newtonian” expansion of
the gravitational wave from a binary pair in a circular orbit that looks something like 4
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A di↵erent way of expressing how the energy loss a↵ects the orbit is to directly calculate the rate at
which the orbital frequency ! changes:
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We call the quantity M the “chirp mass” of the binary, in that at any given orbital frequency, the rate at
which the frequency increases is determined completely by M.

As an example, consider the binary pair known as HM Cancri (RX JO806.3+1527). This system consists
of two white-dwarf stars with masses of 0.55 M� and 0.27 M� (M = 1200 m, ⌘ = 0.149/0.822 = 0.22)
orbiting with a period of 321.53 s = 9.6⇥ 1010 m. The distance to this system is not well known but is
probably close to 16,000 ly = 1.5⇥ 1020 m. For this system, GM! = 7.9⇥ 10�8, and from that, one can
show that for this fairly face-on system (inclination angle 38�),
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The gravitational wave power radiated by the system is fairly large: about 60 times the rate that the sun
radiates EM energy. However, this is such a small fraction of the system’s total energy that the rate of
change of the period is so small as to be di�cult to detect (1.2 ms per year). To detect waves from this
system, a gravitational wave detector would need to be able to measure fractional changes in the distance
between floating masses of at least 10�22 at a frequency of 2/321.53 s = 6.2mHz. The LIGO detector has
the appropriate sensitivity only in a frequency range of hundreds of Hz, not in this low frequency range.
But this system’s frequency is at the sweet spot for LISA, and would have a predicted signal-to-noise ratio
of better than 200 for a four-year observation period. This is one of about 50 candidate “LISA verification
binaries” detailed in a very recent paper. 2

Before 2015, the strongest evidence available for the existence of gravitational waves was observations of
the Hulse-Taylor binary system (PSR B1913+16), which includes a pulsar. Because a pulsar is an extraor-
dinarily good clock, one is able to infer this system’s orbital parameters to extraordinary accuracy from the
Doppler shifts of the pulsar’s signal. Though this system is complicated to analyze (because the orbit fairly
elliptical). This system has been observed for more than 40 years, and energy loss from this system over this
period is very clear, and the ratio of the observed loss to the accumulated loss predicted by general relativity
is currently 0.9983 ± 0.0016.3

5.6.3 Exercise: Power Radiated by HM Cnc.

Verify the power calculation given above. The value of G in units where c = 1 is 7.426⇥ 10�28 m/kg, and
after using this to get the radiated power in kg (of energy) per meter (of time), multiply the result by the
appropriate power of c to convert to watts. What is that power of c?

As you can see, these calculations assume a completely Newtonian source, an approximation that gets
worse and worse as a binary system approaches coalescence. In the HM Cancri system above, the speeds of
the orbiting white dwarfs are about 400 km/s = 0.0013c, so it is possible that relativistic e↵ects would be
measurable. To be able to better predict the waveforms from weakly-relativistic binary systems, a research
group associated with Luc Blanchet did calculations in the 1990s extending the work that we have rehearsed
here by calculating correction terms to higher orders in v/c. This leads to a “Post-Newtonian” expansion of
the gravitational wave from a binary pair in a circular orbit that looks something like 4
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A di↵erent way of expressing how the energy loss a↵ects the orbit is to directly calculate the rate at
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We call the quantity M the “chirp mass” of the binary, in that at any given orbital frequency, the rate at
which the frequency increases is determined completely by M.

As an example, consider the binary pair known as HM Cancri (RX JO806.3+1527). This system consists
of two white-dwarf stars with masses of 0.55 M� and 0.27 M� (M = 1200 m, ⌘ = 0.149/0.822 = 0.22)
orbiting with a period of 321.53 s = 9.6⇥ 1010 m. The distance to this system is not well known but is
probably close to 16,000 ly = 1.5⇥ 1020 m. For this system, GM! = 7.9⇥ 10�8, and from that, one can
show that for this fairly face-on system (inclination angle 38�),
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The gravitational wave power radiated by the system is fairly large: about 60 times the rate that the sun
radiates EM energy. However, this is such a small fraction of the system’s total energy that the rate of
change of the period is so small as to be di�cult to detect (1.2 ms per year). To detect waves from this
system, a gravitational wave detector would need to be able to measure fractional changes in the distance
between floating masses of at least 10�22 at a frequency of 2/321.53 s = 6.2mHz. The LIGO detector has
the appropriate sensitivity only in a frequency range of hundreds of Hz, not in this low frequency range.
But this system’s frequency is at the sweet spot for LISA, and would have a predicted signal-to-noise ratio
of better than 200 for a four-year observation period. This is one of about 50 candidate “LISA verification
binaries” detailed in a very recent paper. 2

Before 2015, the strongest evidence available for the existence of gravitational waves was observations of
the Hulse-Taylor binary system (PSR B1913+16), which includes a pulsar. Because a pulsar is an extraor-
dinarily good clock, one is able to infer this system’s orbital parameters to extraordinary accuracy from the
Doppler shifts of the pulsar’s signal. Though this system is complicated to analyze (because the orbit fairly
elliptical). This system has been observed for more than 40 years, and energy loss from this system over this
period is very clear, and the ratio of the observed loss to the accumulated loss predicted by general relativity
is currently 0.9983 ± 0.0016.3

5.6.3 Exercise: Power Radiated by HM Cnc.

Verify the power calculation given above. The value of G in units where c = 1 is 7.426⇥ 10�28 m/kg, and
after using this to get the radiated power in kg (of energy) per meter (of time), multiply the result by the
appropriate power of c to convert to watts. What is that power of c?

As you can see, these calculations assume a completely Newtonian source, an approximation that gets
worse and worse as a binary system approaches coalescence. In the HM Cancri system above, the speeds of
the orbiting white dwarfs are about 400 km/s = 0.0013c, so it is possible that relativistic e↵ects would be
measurable. To be able to better predict the waveforms from weakly-relativistic binary systems, a research
group associated with Luc Blanchet did calculations in the 1990s extending the work that we have rehearsed
here by calculating correction terms to higher orders in v/c. This leads to a “Post-Newtonian” expansion of
the gravitational wave from a binary pair in a circular orbit that looks something like 4
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“chirp mass”



Gravitational Waves from Binaries:
Numbers for HM Cancri
HM Cancri (RX JO806.3+1527) consists of white dwarfs with masses of
0.55 and 0.27 solar masses (M = 1200 m, η = (0.149/0.822 = 0.22) with
period 321.5 s = 9.6 × 1010 m. Distance ≈ 16,000 ly = 1.5 × 1020 m.
For this system GMω = 7.9 × 10–8.  Orientation: nearly face on.

As an example, consider the binary pair known as HM Cancri (RX JO806.3+1527). This system consists
of two white-dwarf stars with masses of 0.55 M� and 0.27 M� (M = 1200 m, ⌘ = 0.149/0.822 = 0.22)
orbiting with a period of 321.53 s = 9.6⇥ 1010 m. The distance to this system is not well known but is
probably close to 16,000 ly = 1.5⇥ 1020 m. For this system, GM! = 7.9⇥ 10�8, and from that, one can
show that for this fairly face-on system (inclination angle 38�),
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The gravitational wave power radiated by the system is fairly large: about 60 times the rate that the sun
radiates EM energy. However, this is such a small fraction of the system’s total energy that the rate of
change of the period is so small as to be di�cult to detect (1.2 ms per year). To detect waves from this
system, a gravitational wave detector would need to be able to measure fractional changes in the distance
between floating masses of at least 10�22 at a frequency of 2/321.53 s = 6.2mHz. The LIGO detector has
the appropriate sensitivity only in a frequency range of hundreds of Hz, not in this low frequency range.
But this system’s frequency is at the sweet spot for LISA, and would have a predicted signal-to-noise ratio
of better than 200 for a four-year observation period. This is one of about 50 candidate “LISA verification
binaries” detailed in a very recent paper. 2

Before 2015, the strongest evidence available for the existence of gravitational waves was observations of
the Hulse-Taylor binary system (PSR B1913+16), which includes a pulsar. Because a pulsar is an extraor-
dinarily good clock, one is able to infer this system’s orbital parameters to extraordinary accuracy from the
Doppler shifts of the pulsar’s signal. Though this system is complicated to analyze (because the orbit fairly
elliptical). This system has been observed for more than 40 years, and energy loss from this system over this
period is very clear, and the ratio of the observed loss to the accumulated loss predicted by general relativity
is currently 0.9983 ± 0.0016.3

5.6.3 Exercise: Power Radiated by HM Cnc.

Verify the power calculation given above. The value of G in units where c = 1 is 7.426⇥ 10�28 m/kg, and
after using this to get the radiated power in kg (of energy) per meter (of time), multiply the result by the
appropriate power of c to convert to watts. What is that power of c?

As you can see, these calculations assume a completely Newtonian source, an approximation that gets
worse and worse as a binary system approaches coalescence. In the HM Cancri system above, the speeds of
the orbiting white dwarfs are about 400 km/s = 0.0013c, so it is possible that relativistic e↵ects would be
measurable. To be able to better predict the waveforms from weakly-relativistic binary systems, a research
group associated with Luc Blanchet did calculations in the 1990s extending the work that we have rehearsed
here by calculating correction terms to higher orders in v/c. This leads to a “Post-Newtonian” expansion of
the gravitational wave from a binary pair in a circular orbit that looks something like 4
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and so on, where i is the inclination angle between the orbit’s normal and the line of sight, and  is the
orbital phase, whose leading term is !(t � R) but also which has correction terms. A similar expansion
yields the cross polarization. (In this formulation, the inclination-angle dependence arises from projecting
the transverse- traceless components onto the plane perpendicular to the line of sight.) We see that this
formula represents basically an expansion in a power series in the orbital speed v. The series above carries
this expansion out to a factor of (GM/D)2 ⇡ v4, which people describe as being to “post-Newtonian order
2” or 2PN. The additional terms come mostly from higher-order corrections to the motions of the binary
stars coming from the geodesic equations of motion.
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This is one of the best “LISA verification binaries” known.

Exercise:  Verify the power using G = 7.426 × 10–28 m/kg to get the 
power in kg/m, then convert to watts by multiplying by the appropriate 
power of c (which is what power?)



Gravitational Waves from Binaries:
Pre-2015 Evidence for GWs

Hulse-Taylor Binary
(PSR B1913+16)
(Graph from
Weisberg and Huang,
The Astrophysical 
Journal, 829:55, 
 2016 September 20) 



Gravitational Waves from Binaries:
Post-Newtonian calculations
A more sophisticated model keeps track of corrections to the 
Newtonian model as a power series in orders of v2.  The resulting
expression for the waveform looks like

As an example, consider the binary pair known as HM Cancri (RX JO806.3+1527). This system consists
of two white-dwarf stars with masses of 0.55 M� and 0.27 M� (M = 1200 m, ⌘ = 0.149/0.822 = 0.22)
orbiting with a period of 321.53 s = 9.6⇥ 1010 m. The distance to this system is not well known but is
probably close to 16,000 ly = 1.5⇥ 1020 m. For this system, GM! = 7.9⇥ 10�8, and from that, one can
show that for this fairly face-on system (inclination angle 38�),
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The gravitational wave power radiated by the system is fairly large: about 60 times the rate that the sun
radiates EM energy. However, this is such a small fraction of the system’s total energy that the rate of
change of the period is so small as to be di�cult to detect (1.2 ms per year). To detect waves from this
system, a gravitational wave detector would need to be able to measure fractional changes in the distance
between floating masses of at least 10�22 at a frequency of 2/321.53 s = 6.2mHz. The LIGO detector has
the appropriate sensitivity only in a frequency range of hundreds of Hz, not in this low frequency range.
But this system’s frequency is at the sweet spot for LISA, and would have a predicted signal-to-noise ratio
of better than 200 for a four-year observation period. This is one of about 50 candidate “LISA verification
binaries” detailed in a very recent paper. 2

Before 2015, the strongest evidence available for the existence of gravitational waves was observations of
the Hulse-Taylor binary system (PSR B1913+16), which includes a pulsar. Because a pulsar is an extraor-
dinarily good clock, one is able to infer this system’s orbital parameters to extraordinary accuracy from the
Doppler shifts of the pulsar’s signal. Though this system is complicated to analyze (because the orbit fairly
elliptical). This system has been observed for more than 40 years, and energy loss from this system over this
period is very clear, and the ratio of the observed loss to the accumulated loss predicted by general relativity
is currently 0.9983 ± 0.0016.3

5.6.3 Exercise: Power Radiated by HM Cnc.

Verify the power calculation given above. The value of G in units where c = 1 is 7.426⇥ 10�28 m/kg, and
after using this to get the radiated power in kg (of energy) per meter (of time), multiply the result by the
appropriate power of c to convert to watts. What is that power of c?

As you can see, these calculations assume a completely Newtonian source, an approximation that gets
worse and worse as a binary system approaches coalescence. In the HM Cancri system above, the speeds of
the orbiting white dwarfs are about 400 km/s = 0.0013c, so it is possible that relativistic e↵ects would be
measurable. To be able to better predict the waveforms from weakly-relativistic binary systems, a research
group associated with Luc Blanchet did calculations in the 1990s extending the work that we have rehearsed
here by calculating correction terms to higher orders in v/c. This leads to a “Post-Newtonian” expansion of
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and so on, where i is the inclination angle between the orbit’s normal and the line of sight, and  is the
orbital phase, whose leading term is !(t � R) but also which has correction terms. A similar expansion
yields the cross polarization. (In this formulation, the inclination-angle dependence arises from projecting
the transverse- traceless components onto the plane perpendicular to the line of sight.) We see that this
formula represents basically an expansion in a power series in the orbital speed v. The series above carries
this expansion out to a factor of (GM/D)2 ⇡ v4, which people describe as being to “post-Newtonian order
2” or 2PN. The additional terms come mostly from higher-order corrections to the motions of the binary
stars coming from the geodesic equations of motion.
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