

General Relativity and Gravitational Waves: Session 5. Gravitational Waves

Thomas A. Moore — Les Houches — July 9, 2018

Overview of this session:

4.2 Transverse-Traceless Gauge 4.3 Generating Gravitational Waves 4.4 Gravitational Wave Energy 4.5 Source Luminosity 4.6 Gravitational Waves from Binary Stars

The Transverse-Traceless Gauge: Fundamentals

We start where we left off last time:

Weak-Field Approximation: $g_{\mu\nu} \equiv \eta_{\mu\nu} + h_{\mu\nu}$ with $|h_{\mu\nu}| \ll 1$ Trace-reversed Perturbation: $H^{\mu\nu} \equiv h^{\mu\nu} - \frac{1}{2}\eta^{\mu\nu}h$ Einstein Equation: $\Box^2 H^{\mu\nu} = -16\pi G T^{\mu\nu}$ Lorenz condition: $\partial_{\mu} H^{\mu\nu} = 0$

Remaining gauge freedom:

 $x'^{\alpha} = x^{\alpha} + \xi^{\alpha}$ where $|\xi^{\alpha}| \ll 1$ and $\Box^2 \xi^{\alpha} = 0$

Gauge transformation:

 $H^{\prime\,\mu\nu} = H^{\mu\nu} - \partial^{\mu}\xi^{\nu} - \partial^{\mu}\xi^{\nu} + \eta^{\mu\nu}\partial_{\alpha}\xi^{\alpha}$

The Transverse-Traceless Gauge: Fundamentals

In empty space, attempt a solution of the form: $H^{\mu\nu} = A^{\mu\nu} \cos k_{\sigma} x^{\sigma} = A^{\mu\nu} \cos(\vec{k} \cdot \vec{r} - \omega t)$ Einstein Equation: $\Box^2 H^{\mu\nu} = 0 \Rightarrow k^{\alpha} k_{\alpha} = 0$ Lorenz condition: $\partial_{\mu} H^{\mu\nu} = 0 \Rightarrow k_{\mu} A^{\mu\nu} = 0$ Symmetry: $\Rightarrow A^{\mu\nu} = A^{\nu\mu}$

The Einstein equation implies that

$$0 = k^{\alpha}k_{\alpha} = \eta^{\alpha\beta}k_{\alpha}k_{\beta} = \eta^{tt}(-\omega)^{2} + \eta^{xx}(k_{x})^{2} + \eta^{yy}(k_{y})^{2} + \eta^{zz}(k_{z})^{2}$$

$$\Rightarrow \quad 0 = -\omega^{2} + k^{2} \quad \Rightarrow \quad \omega = k \quad \Rightarrow \quad v = \frac{\omega}{k} = 1$$

Real waves curve spacetime, and are thus revealed by the Riemann tensor

	$\mu\nu \rightarrow$	tx	ty	tz	xy	xz	yz
$\alpha\beta\downarrow$	tx	R_{txtx}	and the second	Contraction of the second second second	R_{txxy}	the second of the second se	
	ty				R_{tyxy}		State of the second
	tz	a second second			R_{tzxy}		
	xy				R_{xyxy}	R_{xyxz}	R_{xyyz}
	xz					D	and the second se
	yz						R_{yzyz}

Assume $k_t = -\omega$, $k_x = k_y = 0$, $k_z = \omega$. Lorenz condition then implies

$$0 = k_{\mu}A^{\mu\nu} = -\omega A^{t\nu} + \omega A^{z\nu} \implies A^{tx} = A^{zx} \ (= A^{tz})$$
$$A^{tx} = A^{zx} \ (= A^{xt} = A^{xz})$$
$$A^{ty} = A^{zy} \ (= A^{yt} = A^{yz})$$
$$A^{tz} = A^{zz} \ (= A^{zt} = A^{tt} \text{ from above})$$

Also note that

 $\partial_{\beta}\partial_{\mu}h_{\alpha\nu} = \partial_{\beta}\partial_{\mu}(H_{\alpha\nu} - \frac{1}{2}\eta_{\alpha\nu}H) = k_{\beta}k_{\mu}(A_{\alpha\nu} - \frac{1}{2}\eta_{\alpha\nu}A)\sin k_{\sigma}x^{\sigma}$ with $A \equiv \eta_{\mu\nu}A^{\mu\nu} = -A^{tt} + A^{xx} + A^{yy} + A^{zz} = A^{xx} + A^{yy}$ Finally, note that

$$A_{\alpha\nu} = \eta_{\alpha\beta}\eta_{\nu\mu}A^{\beta\mu} = \begin{cases} -A^{\alpha\nu} \text{ if either } \alpha = t \text{ or } \nu = t \text{ but not both} \\ +A^{\alpha\nu} \text{ otherwise} \end{cases}$$

Riemann tensor components are:

$$R_{\alpha\beta\mu\nu} = \frac{1}{2} (\partial_{\beta}\partial_{\mu}h_{\alpha\nu} + \partial_{\alpha}\partial_{\nu}h_{\beta\mu} - \partial_{\alpha}\partial_{\mu}h_{\beta\nu} - \partial_{\beta}\partial_{\nu}h_{\alpha\mu})$$

$$= -\frac{1}{2} (k_{\beta}k_{\mu}[A_{\alpha\nu} - \frac{1}{2}\eta_{\alpha\nu}A] + k_{\alpha}k_{\nu}[A_{\beta\mu} - \frac{1}{2}\eta_{\beta\mu}A]$$

$$- k_{\alpha}k_{\mu}[A_{\beta\nu} - \frac{1}{2}\eta_{\beta\nu}A] - k_{\beta}k_{\nu}[A_{\alpha\mu} - \frac{1}{2}\eta_{\alpha\mu}A]) \sin k_{\sigma}x^{\sigma}$$

Some specific Riemann tensor components:

$$R_{txtx} = -\frac{1}{2} (k_x k_t [A_{xt} - \frac{1}{2} \eta_{xt} A] + k_t k_x [A_{tx} - \frac{1}{2} \eta_{tx} A] - k_t k_t [A_{xx} - \frac{1}{2} \eta_{xx} A] - k_x k_x [A_{tt} - \frac{1}{2} \eta_{tt} A]) \sin k_\sigma x^\sigma = -\frac{1}{2} (0 + 0 - \omega^2 [A_{xx} - \frac{1}{2} (A_{xx} + A_{yy})] - 0) \sin k_\sigma x^\sigma = +\frac{1}{4} \omega^2 (A_{xx} - A_{yy}) \sin k_\sigma x^\sigma$$

$$R_{txtz} = -\frac{1}{2} (k_x k_t [A_{tz} - \frac{1}{2} \eta_{tz} A] + k_t k_z [A_{xt} - \frac{1}{2} \eta_{xt} A] - k_t k_t [A_{xz} - \frac{1}{2} \eta_{xz} A] - k_x k_z [A_{tt} - \frac{1}{2} \eta_{tt} A]) \sin k_\sigma x^\sigma = -\frac{1}{2} (0 - \omega^2 A_{xt} - \omega^2 A_{xz} - 0) \sin k_\sigma x^\sigma = +\frac{1}{2} \omega^2 (A_{xt} + A_{xz}) \sin k_\sigma x^\sigma = 0$$

The entire list of Riemann components

where $a \equiv \frac{1}{4}\omega^2 (A_{xx} - A_{yy}) \sin k_\sigma x^\sigma$ and $b \equiv \frac{1}{2}\omega^2 A_{xy} \sin k_\sigma x^\sigma$.

(Note that $R_{txyz} + R_{tzxy} + R_{tyzx} = R_{txyz} + R_{tzxy} - R_{tyxz} = 0.$)

The only values that matter: $A_{xx} - A_{yy}$ and $A_{yx} = A_{xy}$ We therefore ought to be able to do a coordinate transformation to erase all $A^{t\mu}$ and $A^{z\mu}$ and also make the matrix traceless:

$$A_{\text{new}}^{xx} = A^{xx} - \frac{1}{2}A = A^{xx} - \frac{1}{2}(A^{xx} + A^{yy}) = \frac{1}{2}(A^{xx} - A^{yy})$$
$$A_{\text{new}}^{yy} = A^{yy} - \frac{1}{2}A = A^{yy} - \frac{1}{2}(A^{xx} + A^{yy}) = -\frac{1}{2}(A^{xx} - A^{yy})$$

We call the gauge where waves in the +z direction have the form

$$H_{TT}^{\mu\nu} = \left(A_{+} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + A_{\times} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \right) \cos k_{\sigma} x^{\sigma}$$

transverse-traceless gauge. Note that $h_{TT}^{\mu\nu} = H_{TT}^{\mu\nu} - \frac{1}{2}\eta^{\mu\nu}H_{TT} = H_{TT}^{\mu\nu}$

The geodesic equation:

$$\frac{d^2x^{\alpha}}{d\tau^2} = -\Gamma^{\alpha}_{\mu\nu}u^{\mu}u^{\nu} = -\Gamma^{\alpha}_{tt}u^t u^t = -\frac{1}{2}\eta^{\alpha\beta}(\partial_t h^{TT}_{t\beta} + \partial_t h^{TT}_{\beta t} - \partial_\beta h^{TT}_{tt})u^t u^t = 0!$$

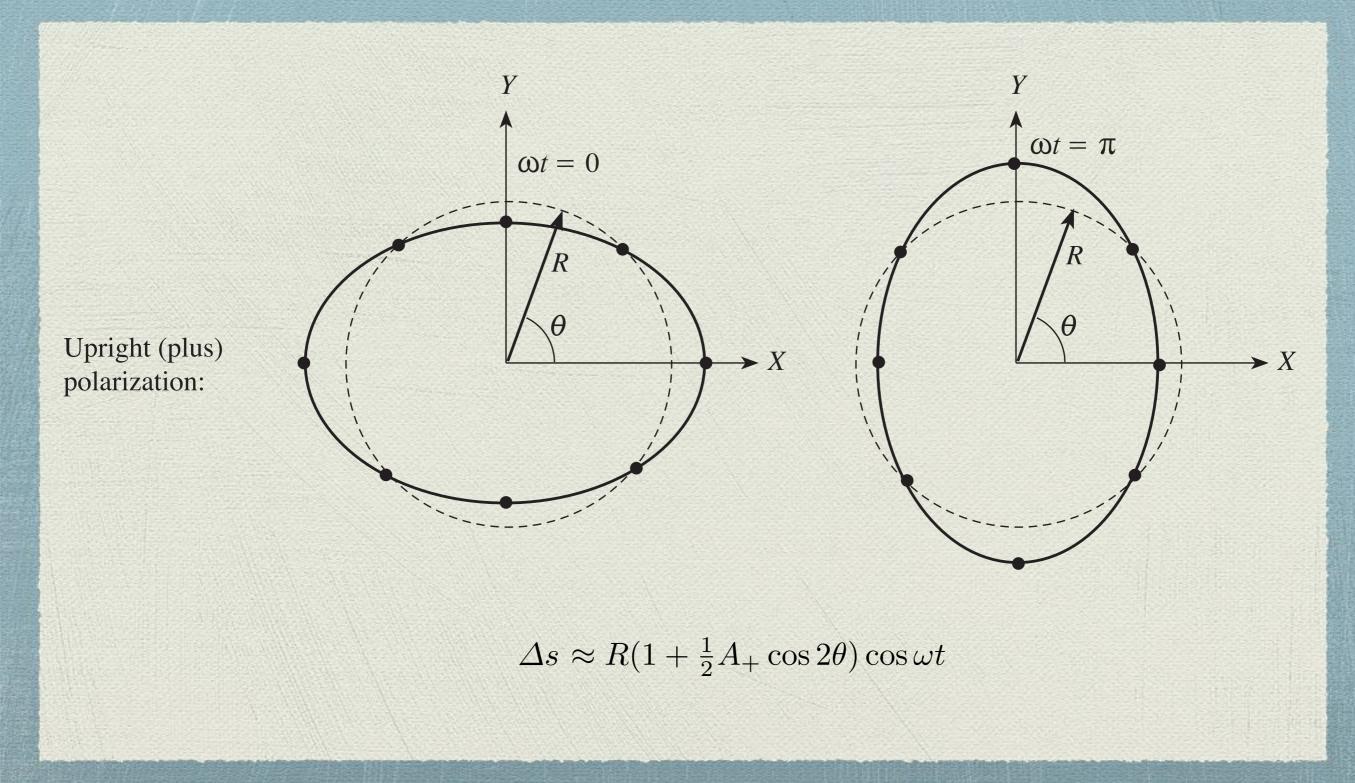
Uh oh. Do the waves really have no physical effect?

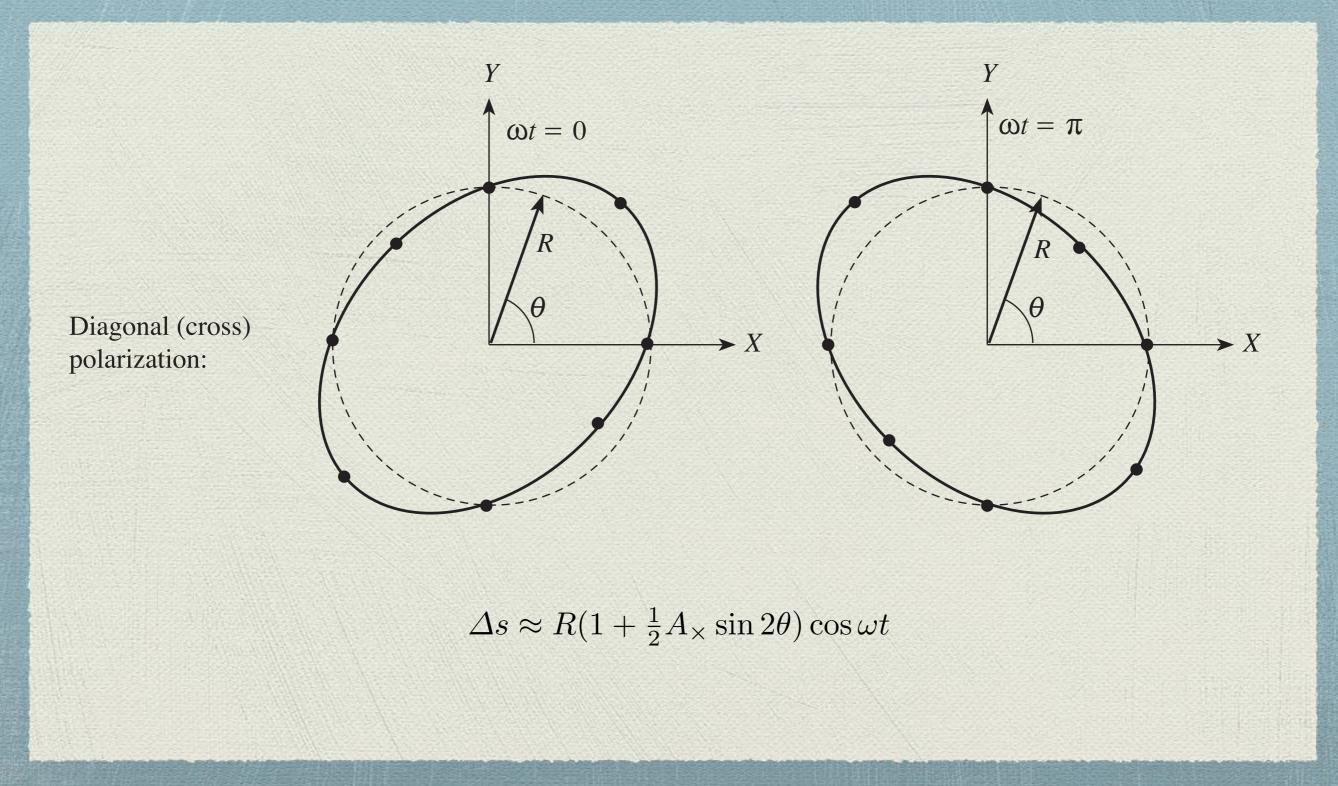
We have to check the metric! Consider a plus-polarized wave moving through a ring of floating particles such that $R^2 = \Delta x^2 + \Delta y^2$:

$$\begin{split} \Delta s^2 &= (\eta_{xx} + h_{xx}^{TT}) \Delta x^2 + (\eta_{yy} + h_{yy}^{TT}) \Delta x^2 \\ &= (1 + A_+) R^2 \cos^2 \theta \cos^2 \omega t + (1 - A_+) R^2 \sin^2 \theta \cos^2 \omega t \\ &= R^2 [1 + A_+ (\cos^2 \theta - \sin^2 \theta)] \cos^2 \omega t = R^2 (1 + A_+ \cos 2\theta) \cos^2 \omega t \\ &\Rightarrow \quad \Delta s = R (1 + A_+ \cos 2\theta)^{1/2} \cos \omega t \approx R (1 + \frac{1}{2}A_+ \cos 2\theta) \cos \omega t \end{split}$$

Similarly, for a cross-polarized wave:

 $\Delta s \approx R(1 + \frac{1}{2}A_{\times}\sin 2\theta)\cos\omega t$





International Symbol for Dangerous Gravitational Radiation

WARNING: GRAVITATIONAL RADIATION

Generating Gravitational Waves: Rough estimates

Waves at source will (at worst) have metric perturbations ~ 1 at the source's surface. Amplitude falls off as 1/r.

First LIGO source: ~ 60 solar masses ~ 10^5 m. Observed amplitude was 10^{-21} , so distance must have been about 10^{26} m = 10^{10} ly. Actual estimate was 1.3 Gy.

Sun as black hole eaten by another black hole: GM \approx 3000 m. Amplitude of wave at earth $\sim 1/(1.5 \times 10^{11}/3000) \approx 2 \times 10^{-8}$.

Generating Gravitational Waves: "Small-weak-slow" approximation

- 1. The source is *small* compared to both the wave's wavelength and the distance to the observer.
- 2. The source is *weak* in that $|h_{\mu\nu}| \ll 1$ even at the source.
- 3. The source is *slow* in that parts of the source move with speeds $v \ll 1$.

"Weak" means that we can use the weak-field Einstein equation: $\Box^2 H^{\mu\nu} = -16\pi G T^{\mu\nu} \quad \text{subject to the Lorenz condition } \partial_{\mu} H^{\mu\nu} = 0$

For which we know the solutions are:

$$H^{\mu\nu}(t,\vec{R}) = 4G \int_{\text{src}} \frac{T^{\mu\nu}(t-s,\vec{r}) \, dV}{s} \quad \text{where } s \equiv |\vec{R} - \vec{r}|$$

Generating Gravitational Waves: "Small-weak-slow" approximation

"Small" means that $R \approx s$, and that the retarded time $t - s \approx t - R$:

$$H^{\mu\nu}(t,\vec{R}) = \left[\frac{4G}{R}\int_{\text{src}} T^{\mu\nu} \, dV\right]_{\text{at }t-R}$$

Overview: (1) $H^{tt} = 4GM/R = \text{constant}$, and $H^{ti} = H^{it} = 0$

(2)
$$\int_{\text{src}} T^{ij} dV = \frac{1}{2} \frac{d^2}{dt^2} \int_{\text{src}} T^{tt} x^i x^j dV = \frac{1}{2} \frac{d^2}{dt^2} \int_{\text{src}} \rho x^i x^j dV \equiv \frac{1}{2} \ddot{I}^{ij}$$

(3)
$$F^{ij} \equiv \int_{\text{src}} \rho (x^i x^j - \frac{1}{3} \eta^{ij} r^2) dV \quad \text{where } r^2 \equiv x^2 + y^2 + z^2$$

$$\begin{aligned} \textbf{(4)} \quad H_{TT}^{xx} &= \frac{1}{2}(H^{xx} - H^{yy}) = \frac{2G}{R}\frac{1}{2}(\ddot{I}^{xx} - \ddot{I}^{yy}) = \frac{2G}{R}\frac{1}{2}(\ddot{F}^{xx} - \ddot{F}^{yy}) \equiv \frac{2G}{R}\ddot{F}_{TT}^{xx} \\ H_{TT}^{yy} &= \frac{1}{2}(H^{yy} - H^{xx}) = \frac{2G}{R}\frac{1}{2}(\ddot{I}^{yy} - \ddot{I}^{xx}) = \frac{2G}{R}\frac{1}{2}(\ddot{F}^{yy} - \ddot{F}^{xx}) \equiv \frac{2G}{R}\ddot{F}_{TT}^{yy} \\ H_{TT}^{xy} &= \frac{2G}{R}\ddot{I}^{xy} = \frac{2G}{R}\ddot{F}^{xy} \equiv \frac{2G}{R}\ddot{F}_{TT}^{xy} \end{aligned}$$

Energy conservation in GR is a tricky topic, but here is a commonly accepted trick for handling energy in gravitational waves.

Einstein equation is to first order in the metric perturbation: $-2G^{(1)}_{\mu\nu} = \Box^2 H_{\mu\nu} = -16\pi G T_{\mu\nu}$

Trick is to expand the left side to second-order in the perturbation $-2G^{(1)}_{\mu\nu} - 2G^{(2)}_{\mu\nu} = \Box^2 H_{\mu\nu} - 2G^{(2)}_{\mu\nu} = -16\pi G T_{\mu\nu}$

Treat the 2nd-order part as a stress-energy tensor for gravitational waves: $\Box^{2}H_{\mu\nu} = -16\pi G T_{\mu\nu} + 2G^{(2)}_{\mu\nu} = -16\pi G (T_{\mu\nu} + T^{GW}_{\mu\nu}) \quad \text{where} \quad T^{GW}_{\mu\nu} \equiv \frac{G^{(2)}_{\mu\nu}}{8\pi G}$ Because of the Lorenz gauge condition $\partial_{\mu}H^{\mu\nu} = 0$ we have $\partial_{\mu}(T^{\mu\nu} + T^{\mu\nu}_{GW}) = 0$

Problems:

- 1. $T_{GW}^{\mu\nu}$ is only a tensor with regard to Lorentz-type transformations
- 2. It is not even invariant under a gauge transformation to TT!
- 3. But it does work if we average over several wavelengths:

$$T^{GW}_{\mu\nu} \equiv \frac{\langle G^{(2)}_{\mu\nu} \rangle}{8\pi G}$$

Consider the case of a plus polarized wave. Define:

$$\dot{h}_{+}(t,z) \equiv A_{+}\cos(\omega t - \omega z) = h_{xx}^{TT} = -h_{yy}^{TT}$$
$$\dot{h}_{+} \equiv \partial_{t}h_{+} = -\partial_{z}h_{+} = -A_{+}\omega\sin(\omega t - \omega z)$$
$$\ddot{h}_{+} \equiv \partial_{t}\partial_{t}h_{+} = \partial_{z}\partial_{z}h_{+} = -\partial_{t}\partial_{z}h_{+} = -\partial_{z}\partial_{t}h_{+} = -\omega^{2}h_{+}$$

Use Diagonal Metric Worksheet with A = D = 1, $B = 1 + h_+$, $C = 1 - h_+$: $B_0 = C_3 = -C_0 = -B_3 = \dot{h}_+$ $B_{00} = B_{33} = C_{03} = -B_{03} = -C_{00} = -C_{33} = \ddot{h}_+$

$$R_{tt} = -\frac{1}{2B}B_{00} - \frac{1}{2C}C_{00} + \frac{1}{4B^2}B_0^2 + \frac{1}{4C^2}C_0^2$$

= $-\frac{\ddot{h}_+}{2(1+h_+)} - \frac{\ddot{h}_+}{2(1-h_+)} + \frac{\dot{h}_+^2}{4(1+h_+)^2} + \frac{\dot{h}_+^2}{4(1-h_+)^2}$

Use binomial approximation and drop terms beyond second order:

$$R_{tt} = -\frac{\ddot{h}_{+}}{2(1+h_{+})} - \frac{-\ddot{h}_{+}}{2(1-h_{+})} + \frac{\dot{h}_{+}^{2}}{4(1+h_{+})^{2}} + \frac{\dot{h}_{+}^{2}}{4(1-h_{+})^{2}}$$
$$= -\frac{1}{2}\ddot{h}_{+}(1-h_{+}) + \frac{1}{2}\ddot{h}_{+}(1+h_{+}) + \frac{1}{2}\dot{h}_{+}^{2} = \ddot{h}_{+}h_{+} + \frac{1}{2}\dot{h}_{+}^{2}$$

Now average over several wavelengths:

$$\langle R_{tt} \rangle = \langle \ddot{h}_{+}h_{+} + \frac{1}{2}\dot{h}_{+}^{2} \rangle = \langle -A_{+}^{2}\omega^{2}\cos^{2}\theta + \frac{1}{2}A_{+}^{2}\omega^{2}\sin^{2}\theta \rangle$$

$$= -\omega^{2}A_{+}^{2}\langle\cos^{2}\theta - \sin^{2}\theta - \frac{1}{2}\sin^{2}\theta \rangle = -\omega^{2}A_{+}^{2}\langle\sin 2\theta \rangle - \frac{1}{2}\omega^{2}A_{+}^{2}\langle\sin^{2}\theta \rangle$$

$$= 0 - \frac{1}{2}\langle\dot{h}_{+}\dot{h}_{+}\rangle$$

Similarly: $R_{zz} = R_{tt} = -R_{tz} = -R_{zt}$, and all other $R_{\mu\nu} = 0$.

Exercise

The Diagonal Metric Worksheet's expansion for R_{tz} is $R_{tz} = -\frac{1}{2B}B_{03} - \frac{1}{2C}C_{03} + \frac{1}{4B^2}B_0B_3 - \frac{1}{4C^2}C_0C_3$ $+ \frac{1}{4AB}A_3B_0 + \frac{1}{4AC}A_3C_0 + \frac{1}{4DB}D_0B_3 + \frac{1}{4DC}D_0C_3$

Remember that

 $B_0 = C_3 = -C_0 = -B_3 = \dot{h}_+$ $B_{00} = B_{33} = C_{03} = -B_{03} = -C_{00} = -C_{33} = \ddot{h}_+$

Show then that $-R_{tz} = R_{tt} = \ddot{h}_{+}h_{+} + \frac{1}{2}\dot{h}_{+}^{2}$

This means that

 $R = g^{\mu\nu}R_{\mu\nu} = -(1 - h^{tt})R_{tt} + (1 - h^{zz})R_{zz} = -(1 + 0)R_{tt} + (1 + 0)R_{tt} = 0$

So the effective energy density of a plus-polarized wave is: $T_{tt}^{GW} = -\frac{\langle G_{tt}^{(2)} \rangle}{8\pi G} = -\frac{\langle R_{tt}^{(2)} \rangle}{8\pi G} = +\frac{\langle \dot{h}_{+} \dot{h}_{+} \rangle}{16\pi G}$

The effective energy density of a cross-polarized wave must be the same, so the total energy density is

$$T_{tt}^{GW} = \frac{1}{16\pi G} \langle \dot{h}_{+} \dot{h}_{+} + \dot{h}_{\times} \dot{h}_{\times} \rangle \qquad \text{or} \qquad T_{tt}^{GW} = \frac{1}{32\pi G} \langle \dot{h}_{jk}^{TT} \dot{h}_{TT}^{jk} \rangle$$

Gravitational wave energy flux is (Exercise: Why flux = density?)

$$T_{GW}^{tz} = -T_{tz}^{GW} = +\frac{\langle R_{tz}^{(2)} \rangle}{8\pi G} = -\frac{\langle R_{tt}^{(2)} \rangle}{8\pi G} = \frac{1}{32\pi G} \langle \dot{h}_{jk}^{TT} \dot{h}_{TT}^{jk} \rangle = T_{tt}^{GW} \quad (!)$$

Source Luminosities: TT gauge for arbitrary directions

The problem for calculating luminosities: we have a different TT gauge for every wave direction (and we have only done it for the *z* direction).

Conceptually, this is not difficult. For a wave in the +z direction, we:
1. Project H^{μν} onto the plane perpendicular to the wave's direction
2. Subtract half of the trace of the projected matrix from the two remaining diagonal elements of the projected matrix.

Exercise: Consider an arbitrary $A^{\mu\nu}$ matrix for a wave moving in the +*x* direction. Use the above steps to determine the transverse-traceless version of this matrix for that direction.

Source Luminosities: TT gauge for arbitrary directions

The solution for doing this for arbitrary directions is to express these operations in 3-tensor form that will give the correct components in any (rotated) coordinate system.

It turns out that this tensor projection operator projects a vector on the plane perpendicular to a unit vector \vec{n} : $P_j^i \equiv \delta_j^i - n^i n_j$

When \overrightarrow{n} is in the +*z* direction, this becomes

	[1	0	0		0	0	0		[1	0	0
$P_i^i =$	0	1	0	<u> </u>	0	0	0	=	0	1	0
$P_j^i =$	0	0	1		0	0	1		0	0	0

Since a second-rank tensor ought to behave like the tensor product of two vectors, the projection of 3-tensor ought to be $P_m^i P_n^j I^{mn}$.

Source Luminosities: TT gauge for arbitrary directions

The trace of the projected matrix ought to be

$$I = \eta_{lk} (P_m^l P_n^k I^{mn}) = P_{mk} P_n^k I^{mn} = (\eta_{mk} - n_m n_k) (\delta_n^k - n^k n_m) I^{mn}$$
$$= (\eta_{mn} - n_m n_n - n_m n_n + n_m n_k n^k n_n) I^{mn} = (\eta_{mn} - n_m n_n) I^{mn} = P_{mn} I^{mn}$$

So the complete transformation ought to be:

 $I_{TT}^{jk} = (P_m^{\ i} P_n^{\ j} - \frac{1}{2} P^{ij} P_{mn}) I^{mn}$

Energy flux of a gravitational wave: $\langle \dot{h}_{TT}^{jk} \dot{h}_{jk}^{TT} \rangle / 32\pi G$ and we also know that: $h_{TT}^{ij} = (2GM/R) \ddot{\mu}_{TT}^{ij}$

So flux in a given direction is: flux = $\frac{G}{8\pi R^2} \langle \ddot{\mathcal{F}}_{TT}^{ij} \ddot{\mathcal{F}}_{ij}^{TT} \rangle$ Using the above (and lots of work) yields

 $\text{flux in } \vec{n} \text{-direction} = \frac{G}{16\pi R^2} \langle 2 \vec{\mathcal{F}}^{ij} \vec{\mathcal{F}}_{ij} - 4n^i n^j \vec{\mathcal{F}}_i{}^m \vec{\mathcal{F}}_{mj} + n^i n^j n^m n^n \vec{\mathcal{F}}_{ij} \vec{\mathcal{F}}_{mn} \rangle$

Source Luminosities: Integrating over all directions

To get the total luminosity, we integrate over all directions:

 $\begin{aligned} -\frac{dE}{dt} &= \frac{G}{16\pi R^2} \int_0^{\pi} \left(\int_0^{2\pi} \langle \ddot{\mathcal{F}}_{TT}^{ij} \ddot{\mathcal{F}}_{ij}^{TT} \rangle \, d\phi \right) R^2 \sin \theta \, d\theta \\ &= \frac{G}{16\pi} \int_0^{\pi} \left(\int_0^{2\pi} \langle 2 \ddot{\mathcal{F}}^{ij} \ddot{\mathcal{F}}_{ij} - 4n^i n^j \ddot{\mathcal{F}}_i^{m} \ddot{\mathcal{F}}_{mj} + n^i n^j n^m n^n \ddot{\mathcal{F}}_{ij} \ddot{\mathcal{F}}_{mn} \rangle \, d\phi \right) \sin \theta \, d\theta \end{aligned}$

The quadrupole moment tensor does not depend on the wave direction:

$$-\frac{dE}{dt} = \frac{2G}{16\pi} \langle \ddot{\mathcal{F}}_{ij} \ddot{\mathcal{F}}_{ij} \rangle \int_0^\pi \left(\int_0^{2\pi} d\phi \right) \sin\theta \, d\theta - \frac{4G}{16\pi} \langle \ddot{\mathcal{F}}_i{}^m \ddot{\mathcal{F}}_{mj} \rangle \int_0^\pi \left(\int_0^{2\pi} n^i n^j \, d\phi \right) \sin\theta \, d\theta \\ + \frac{G}{16\pi} \langle \ddot{\mathcal{F}}_{ij} \ddot{\mathcal{F}}_{mn} \rangle \int_0^\pi \left(\int_0^{2\pi} n^i n^j n^m n^n \, d\phi \right) \sin\theta \, d\theta$$

Each integral is just a number that depends on the index values. When all is done: dE = G where E

$$-\frac{dE}{dt} = \frac{G}{5} \langle \ddot{\vec{H}}^{ij} \ddot{\vec{H}}_{ij} \rangle \qquad \text{Important!}$$

Gravitational Waves from Binaries: Fundamentals

Model: point masses m_1 and $m_2 > m_1$ separated by a fixed distance *D*, orbiting in the *xy* plane. We have:

$$r_1 = \left(\frac{m_2}{m_1 + m_2}\right) D \quad \text{and} \quad r_2 = \left(\frac{m_1}{m_1 + m_2}\right) D$$

$$x_1 = r_1 \cos \omega t = \frac{m_2 D}{m_1 + m_2} \cos \omega t \quad \text{and} \quad y_1 = r_1 \sin \omega t = \frac{m_2 D}{m_1 + m_2} \sin \omega t$$

$$x_2 = -r_2 \cos \omega t = -\frac{m_1 D}{m_1 + m_2} \cos \omega t \quad \text{and} \quad y_2 = -r_2 \sin \omega t = -\frac{m_1 D}{m_1 + m_2} \sin \omega t$$

So components of the reduced quadrupole moment tensor are:

$$F^{xx} = \int_{\text{src}} \rho(x^2 - \frac{1}{3}\eta^{xx}r^2) \, dV = m_1(x_1^2 - \frac{1}{3}r_1^2) + m_2(x_2^2 - \frac{1}{3}r_2^2) = (m_1r_1^2 + m_2r_2^2)(\cos^2\omega t - \frac{1}{3}r_2^2)$$

$$F^{xy} = \int_{\text{src}} \rho(xy - \frac{1}{3}\eta^{xy}r^2) \, dV = m_1(x_1y_1 - 0) + m_2(x_2y_2 - 0) = (m_1r_1^2 + m_2r_2^2)\cos\omega t\sin\omega t$$

$$F^{xy} = \int_{\text{src}} \rho(xy - \frac{1}{3}\eta^{xy}r^2) \, dV = m_1(x_1y_1 - 0) + m_2(x_2y_2 - 0) = (m_1r_1^2 + m_2r_2^2)\cos\omega t\sin\omega t$$

Similarly, $\mathcal{I}^{yy} = (m_1 r_1^2 + m_2 r_2^2)(\sin^2 \omega t - \frac{1}{3}), \mathcal{I}^{zz} = \frac{1}{3}(m_1 r_1^2 + m_2 r_2^2)$ and all other $\mathcal{I}^{ij} = 0$.

Gravitational Waves from Binaries: Fundamentals

We can simplify using double-angle formulas and the definitions

$$\eta \equiv \frac{m_1 m_2}{(m_1 + m_2)^2}$$
 and $M \equiv m_1 + m_2$

Note also that

$$m_1 r_1^2 + m_2 r_2^2 = m_1 \left(\frac{m_2 D}{m_1 + m_2}\right)^2 + m_2 \left(\frac{m_1 D}{m_1 + m_2}\right)^2$$
$$= \frac{m_1 m_2^2 + m_2 m_1^2}{(m_1 + m_2)^2} D^2 = \frac{m_1 m_2 D^2 (m_1 + m_2)}{(m_1 + m_2)^2} = \eta M D^2$$

So our reduced quadrupole moment tensor becomes

$$F^{ij} = \frac{1}{2}M\eta D^2 \begin{bmatrix} \frac{1}{3} + \cos 2\omega t & \sin 2\omega t & 0\\ \sin 2\omega t & \frac{1}{3} - \cos 2\omega t & 0\\ 0 & 0 & -\frac{2}{3} \end{bmatrix}$$

Gravitational Waves from Binaries: The Gravitational Waves

The reduced quadrupole moment tensor is

	$\int \frac{1}{3} + \cos 2\omega t$	$\sin 2\omega t$	0
$F^{ij} = \frac{1}{2}M\eta D^2$	$\sin 2\omega t$	$\frac{1}{3} - \cos 2\omega t$	0
	0	0	$-\frac{2}{3}$

Its double time derivative is:

$$\ddot{\mathcal{H}}^{ij} = -2M\eta D^2 \omega^2 \begin{bmatrix} \cos 2\omega t & \sin 2\omega t & 0\\ \sin 2\omega t & -\cos 2\omega t & 0\\ 0 & 0 & 0 \end{bmatrix}$$

This is already in TT format for waves in the +z direction. The wave is

$$h_{TT}^{ij} = H_{TT}^{ij} = \frac{2G}{R} \ddot{H}_{TT}^{ij} = -\frac{4GM\eta D^2 \omega^2}{R} \begin{bmatrix} \cos 2\omega(t-R) & \sin 2\omega(t-R) & 0\\ \sin 2\omega(t-R) & -\cos 2\omega(t-R) & 0\\ 0 & 0 & 0 \end{bmatrix}$$

Gravitational Waves from Binaries: The Gravitational Waves

To find the waves radiated in another direction, use

 $\ddot{\mathcal{H}}_{TT}^{jk} = (P_m^i P_n^j - \frac{1}{2} P^{ij} P_{mn}) \ddot{\mathcal{H}}^{jk} \quad \text{with} \quad P_j^i = \delta_j^i - n^i n_j$

or just calculate by eye: for the *x* direction:

$$h_{TT}^{ij} = \frac{2GM\eta D^2 \omega^2}{R} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \cos 2\omega(t-R) & 0 \\ 0 & 0 & -\cos 2\omega(t-R) \end{bmatrix}$$

Exercise: verify this by applying the steps:

- (1) Project \ddot{H}^{ij} given below onto the plane perpendicular to the *x* direction
- (2) Calculate the trace of the remaining components
- (3) Subtract half the trace from each unaffected diagonal element
- (4) Evaluate the wave at the retarded time.

$$\ddot{H}^{ij} = -2M\eta D^2 \omega^2 \begin{bmatrix} \cos 2\omega t & \sin 2\omega t & 0\\ \sin 2\omega t & -\cos 2\omega t & 0\\ 0 & 0 & 0 \end{bmatrix}$$

Gravitational Waves from Binaries: Total Luminosity

The binary's gravitational wave luminosity is:

 $-\frac{dE}{dt} = \frac{G}{5} \langle \ddot{I}^{ij} \ddot{I}_{ij} \rangle = \frac{32(GM)^2 \eta^2 D^4 \omega^6}{5G}$

Exercise: We can derive this pretty easily from the equation below:

 $\ddot{\mathcal{F}}^{ij} = -2M\eta D^2 \omega^2 \begin{bmatrix} \cos 2\omega t & \sin 2\omega t & 0\\ \sin 2\omega t & -\cos 2\omega t & 0\\ 0 & 0 & 0 \end{bmatrix}$

Do it. In particular, where does the 32 come from?

Gravitational Waves from Binaries: Effects of the Energy Loss

What effect does this have on the system itself? Newton's second law:

$$\frac{Gm_1m_2}{D^2} = \frac{m_1v_1^2}{r_1} \quad \Rightarrow \quad \frac{Gm_2}{D^2} = r_1\left(\frac{v_1}{r_1}\right)^2 = \frac{m_2D}{M}\omega^2 \quad \Rightarrow \quad D^3 = \frac{GM}{\omega^2}$$

Use this to eliminate *D*:

$$-\frac{dE}{dt} = \frac{32(GM)^2\eta\,\omega^6}{5G} \left(\frac{GM}{\omega^2}\right)^{4/3} = \frac{32\eta^2}{5G} (GM\omega)^{10/3}$$

Energy comes at the expense of orbital energy, which is:

$$E = -\frac{Gm_1m_2}{2D} = -\frac{G(\eta M^2)\omega^{2/3}}{2(GM)^{1/3}} = -\frac{1}{2}M(GM\omega)^{2/3}\eta$$

Our circular orbit approximation is not good if spiraling-in happens too fast!

Gravitational Waves from Binaries: Effects of the Energy Loss

One way of quantifying what "too fast" means: calculate dT/dt. Note

$$E = -\frac{1}{2}M(GM\omega)^{2/3}\eta \quad \Rightarrow \quad dE = -\frac{1}{3}M(GM)^{2/3}\omega^{-1/3}\eta \,d\omega$$
$$\Rightarrow \quad \frac{d\omega}{dE} = -\frac{3\omega^{1/3}}{M(GM)^{2/3}\eta}$$

$$\frac{dT}{dt} = \frac{dT}{d\omega} \frac{d\omega}{dE} \frac{dE}{dt} = \left(-\frac{2\pi}{\omega^2}\right) \left(-\frac{3\omega^{1/3}}{M(GM)^{2/3}\eta}\right) \left(-\frac{32\eta^2}{5G}(GM\omega)^{10/3}\right)$$
$$= \frac{192\pi\eta}{5} (GM\omega)^{5/3}$$

$$\frac{d\omega}{dt} = \frac{d\omega}{dE}\frac{dE}{dt} = \frac{96\eta}{5}(GM)^{5/3}\omega^{11/3} = \frac{96}{5}(GM)^{5/3}\omega^{11/3}$$
where $\mathcal{M} \equiv \eta^{3/5}M = \left(\frac{m_1m_2}{[m_1+m_2]^2}\right)^{3/5}[m_1+m_2] = \frac{(m_1m_2)^{3/5}}{(m_1+m_2)^{1/5}}$
"chirp mass"

Gravitational Waves from Binaries: Numbers for HM Cancri

HM Cancri (RX JO806.3+1527) consists of white dwarfs with masses of 0.55 and 0.27 solar masses (M = 1200 m, $\eta = (0.149/0.822 = 0.22)$ with period 321.5 s = 9.6 × 10¹⁰ m. Distance ≈ 16,000 ly = 1.5×10^{20} m. For this system $GM\omega = 7.9 \times 10^{-8}$. Orientation: nearly face on.

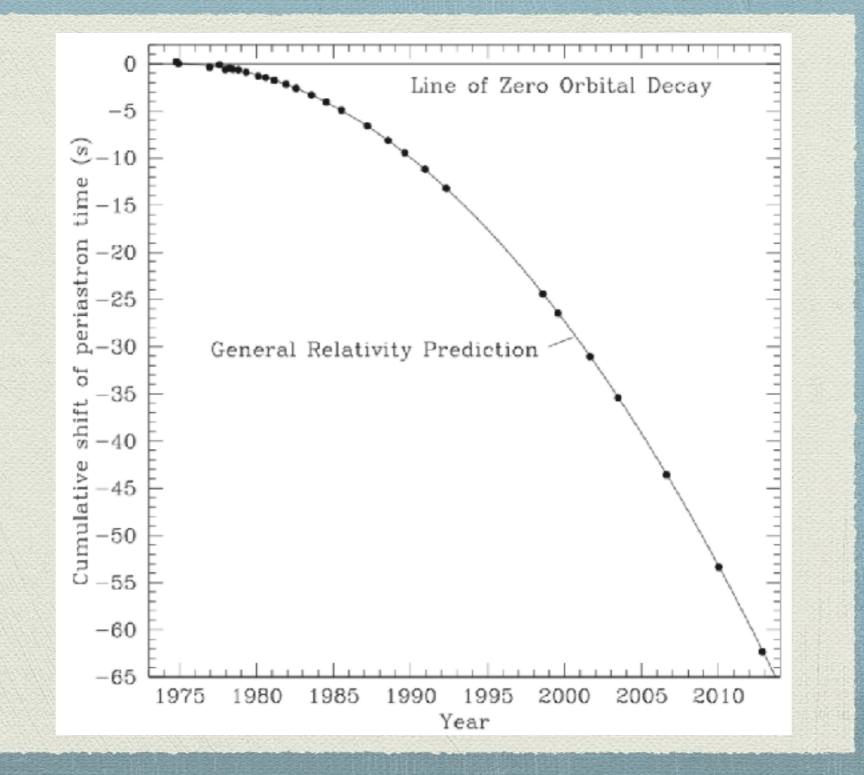
$$A_{+} \approx \frac{4GM\eta D^{2}\omega^{2}}{R} = \frac{4GM\eta}{R} (GM\omega)^{2/3} = 1.3 \times 10^{-22}$$
$$-\frac{dE}{dt} = \frac{32\eta^{2}}{5G} (GM\omega)^{10/3} = 2.4 \times 10^{28} \,\mathrm{W}$$
$$\frac{dT}{dt} = \frac{192\pi\eta}{5} (GM\omega)^{5/3} = -3.9 \times 10^{-11}$$

This is one of the best "LISA verification binaries" known.

Exercise: Verify the power using $G = 7.426 \times 10^{-28}$ m/kg to get the power in kg/m, then convert to watts by multiplying by the appropriate power of *c* (which is what power?)

Gravitational Waves from Binaries: Pre-2015 Evidence for GWs

Hulse-Taylor Binary (PSR B1913+16) (Graph from Weisberg and Huang, *The Astrophysical Journal*, 829:55, 2016 September 20)



Gravitational Waves from Binaries: Post-Newtonian calculations

A more sophisticated model keeps track of corrections to the Newtonian model as a power series in orders of v^2 . The resulting expression for the waveform looks like

$$h_{+} = \frac{2GM\eta}{R} (GM\omega)^{2/3} (B_{+}^{(0)} + y^{1/2} B_{+}^{(1/2)} + y^{1} B_{+}^{(1)} + y^{3/2} B_{+}^{(3/2)} + y^{2} B_{+}^{(2)})$$

with $y \equiv (GM\omega)^{2/3} \approx GM/D \approx v^{2}$ and
 $B_{+}^{(0)} = -(1 + \cos^{2} i) \cos 2\Psi,$
 $B_{+}^{(1/2)} = -\frac{\sin i}{8} \frac{\delta m}{M} \left[(5 + \cos^{2} i) \cos \Psi + 9(1 + \cos^{2} i) \cos 3\Psi \right]$

We would say that this expression is accurate to "second post-Newtonian order" or 2PN.

	SA.debu	g Fi	ile Edit	Rand	domize														
0								LISA Si	mulator										
Input: Delete Row Delete To Er		To End	(All angles are in degrees solve for a variable whose			· ·		100 Rows		Load Fi		ile		Save LISA Input					
case 1	tm(sol) 6	dm 0.0	f(mHz) 2.00000	R(ly) 1000	inc0 36.9	psi0 114.6	pho 0.0	theta 5.0	phi 268.5	X1 *0.0	th10 *0.0	ph10 *0.0	X2 *0.0	th20 *0.0	ph20 *0.0	alph0 0.0			dt(s 50
-	•	0.0		1000			0.0			0.0								-	
		·••	····:	·••	···•••			•••••••••••••••••••••••••••••••••••••••	÷		··•়		···	_	··••		•}••••••	·····÷	
Start	C	urrent Ca	se Progress	:			Ca	se Time:	158.0	5	tep4Spi		44960		Show I	Log	Sav	e Ou	tput.
										tS	tep	3.1	443206	9+7					
utput:			/16/18, 2:5	1 04 -1	- h06 da - 2	0.0.	NI 4	2 Detect		50 .									

Thank you for your kind attention!

