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f‘E r ansverse—Traceless Gaut e -
Fundamentals

We start where we left off last time:
Weak-Field Approximation:  guu = 1 + hyw  with |hy, | < 1
Trace-reversed Perturbation: H*" = h*" — —n“”h
Einstein Equation: 2HM — —_1670GTH
Lorenz conditidni g HE () '

Remammg gauge freedom:

x’ — e Where|§ |<<1 and [J%¢% =0

Gauge transformation:

2L HI/ : H,uz/ = a,ué-z/ 5 a,ué-l/ s ,rluz/aaé-a




e : ;'ransverse-Traceless Gauge |
‘Fundamentals .

In empty space, attempt a solution of the form:
H" = AM cosk,a” = A™ cos(k = 7 — wt)
Einstein Equation- I -9 POk
~ Lorenz condition: 9, H" =0 = kA" =0
. Symmetry, | S A el

~ The EinStein’ equation implies that

0k ok ke W) k) )
4
;

= 0 - — 1




Real waves curve spacetlme, and are thus revealed by the Riemann tensor

V- =i bk ty tz |
O‘ﬁ i/ tx | Rta:ta: | Rta:ty Rt:ctz Rta:a:y Rtwwz ,
el Riyty  Piytz Biyay , tyyz
i e A thfz * tzxz thyz
Ty TYTY :z;ya;z a:yyz

Sl e * Ryzyz
Assume ki = - w, kx =k, =0, k. = . Lorenz condition then implies
- r Att — A%t (= AY)
s 0 s 13: - i))

— A% ( AZt = A" from above)




f‘E _..:’ransverse-Traceless Gau*e .

- He can we tell What is re af .

Also note that |
080, hay = 080, (Huw — %an) = ksk (A — %"7@14) sin kyx°

with A = guAf = AY 4 A% 4 AW £ A5 o A% 4 aw

Fmally, note that
r—AO‘” if either a« =t or v =t but not both |

Aozl/ — TlaB |y ABM ot <
e B77 < —I—AO‘” otherwise

<R1emann tensor components are:

RO‘IBMV S 5(858Mha,, e (‘)aa,,hgu = &ﬁuhﬁy = 856’Vhau)
: : f%(kﬂku [Aaw — %77041/14] + koky|Ag, — %nﬂﬂA] |
- —kaku[Ag, — tnp,A] — kgky[Aay - NapA]) sin ke z”
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can we tell What 1s real7
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Some spec:lﬁc Riemann tensor components: |
Rtwta: e _%(kxkt [A:ct SIS %773;7514] 2 ktkw [Ata: — %ntwA] _
— kiki|Apy — %nm kipkay|Ape — %nttA])sin i

| Al —
o _%(04—0 — wZA[Am3 — %(Am e Ayy)l — 0)sinkyx?

e —|—%w2 (Agz — Ayy) sinkoz?

Rt:}ctz = _%(kazkt A %ntzA] kil %Ua;tA]
kA, — inaaA] — kok[As — inyA)) sink,2°
= —%(O — WA —wA,, —0)sink,x”
— L P4, L A sk ot =0




e | ,.sransverse—Traceless Gau e .

can we tell What 1s real7

< ; L Y- F et
y R R =
-,H =S :
s

The entire list of Riemann components
il tx -ty tz Ty
O‘ﬁ i tx Rta:ta'c e A Rta:ty = b Rtxtz =0 Rta:xy = O
ty SR W R Rtyty
Ty
.

~ where a = w2(Am —A,,)sink,x? and b = §w2A$y sin k,x°

(NOte that Rtxyz + thxy + Rtyzx — Rtxyz + thxy = Rtyxz e O.)




The only values that matter: A;, — 4,y and A,, = A,,

We therefore ought to be able to do a coordinate transformation to
erase all A" and A% and also make the matrix traceless:

A=A — %A = A" — %(Am + AYY) = %(Am — AYY)

AYY  — AYY _ %A:Ayy_ %(Axw+Ayy) _%(Am_Ayy)

new

We call the gauge where waves in the +z direction have the form

gt N
Hb= | A e + A,

X 600 o _ 1y

transverse-traceless gauge. Note that Y. = HrZ — <0 Hpp = HYY

cos k,x°
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: e ;ransverse-Traceless Gauge
/__’-’*"fSlcal effectS Of the Wave

The geodesic equatlon: |

A2z

= - —fouu - Ipuu - oo (@nis + 6’thTT 95T Yutut = 0!

~ Uhoh. Do the waves really have no physical effect?




We have to check the metric! Consider a plus-polarlzed wave moving
through a ring of floating particles such that R* = Ax* + Ay?:

A5, T Ay L .
T —|—A+)R2 cos® 0 cos® wt + (1 — AL )R? sin” @ cos® wt
: = R*[1 + A4 (cos® 0 — sin® 0)] cos® wt = R*(1 + A cos 26) cos” wt
= As=R(1+ AL cos20)"2coswt ~ R(1 + T A cos 26) coswt

‘Similarly, for a cross-polarized wave:

As ~ R(1 + 2 Ay sin 26) cos wt




- The r’ransverse-Traceless Gau:e L
,..""”"_z,.S1ca1 effects of the Wave

, Upfight (plus)
polarization:

s ~ R(1+ A, cos 26’) cos wt




o e ;ransverse-Traceless Gau ge .
;_;-‘*“is1ca1 effects of the Wave

Diagonal (cross)
- polarization:

0 R(l -+ %Ax sin 26’)'(’:0.8 wt
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 Gor eratmg *,ravﬂatlonal Waves:
Rou h est1mates

Waves at source will (at Worst) have metric perturbatlons ~ 1 at the
source’s surface. Amplitude falls off as 1/r.

First LIGO source: ~ 60 solar masses ~ 10°> m. Observed amplitude was
10-21, so distance must have been about 1026 m = 1010 ly. Actual estimate
was 1.3 Gy.

~ Sun as black hole eaten by another black hole: GM = 3000 m. Amplitude
of wave at earth ~ 1/(1.5 x 1011/3000) = 2 x 10-8.




e eratm g ﬁjrav1tat1onal Vaves:
,_;.e-'fffmall-we ak- slow ‘apprc 01 mation

1. The source is small compared to both the wave’s Wavelength and the
distance to the observer. '

2. The source is weak in that |k, | < 1 even at the source.

3. The source is slow in that parts of the source move with speeds v << 1.

“Weak” means that we can use the weak-field Einstein equation:

‘HM = —160GT*” subject to the Lorenz condition gt =1

For which we know the solutions are:

THY(t — s,7)dV

where s = |R — 7]
S

HW (4t By 4G/

SRE Ay
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'",;_;jfmall—weak—slow approx1mat1on;

“Small” means that R = s, and that the retarded timet—s~=t—R:

H (t, ) = [§ / TH dV]
| | R src at t— R
Overview: (1) H" =4GM/R = constant, and H = Ht = (

2 2
= (2) T” dV = —d— Tttxzazj i pxixﬂ' v = =i
7 2 dt? = D 2

(3) LY E/ p(z'z? — inr?)dV  where r* = 2° + y° + 2°

(4) Hrg = %(H SO = — = %(% %yy) = f%TT

o 3 2 2 20
A = o - ) = Ty - I = Ty - by = T

| R
e e




Energy conservation in GR is a tricky topic, but here is a commonly
accepted trick for handling energy in gravitational waves.

Einstein equation is to first order in the metric perturbation:
—2G\}) = O°H,,, = —167GT,,

Trick is to expand the left side to second-order in the perturbation
—2G)) —2G¢) = O*H,, — 2G2) = —167GT,,

Treat the 2nd-order part as a stress-energy tensor for gravitational waves:
G

’H,,, = —167GT,, +2G) = —167G(T), + T3)") where TG =

Because of the Lorenz gauge condition 9, H** = 0 we have

(%(T’“’ "‘TC%/) =



Gravitational Wave Energy

Problems:

i is only a tensor with regard to Lofentz-type transformations
2. Itis not even invariant under a gauge transformation to TT!
3. But it does work if we average over several wavelengths:
e | .
(Gv)
8l

e
'T/w =




Consider the case of a plus polarized WaVe. Define:
hi(t2) = Ay cos(wt —w2) = e
h+ = 8th+ = —0, h+ = —A+w sm(wt — wz)
b —00bh —00h -~ 00k — 00 — -’h,

* UseDlagonal Metric Worksheet withA=D=1,B=1+h;, C=1- h+:
ABO =(C3=—-0Cy = ;Bg Z}L_|_
Bog = B33 = Cg3 = —Byz = —Cyp = —C33 = h.

Ry = ——Boo — 56Co0 + 43230 + 402 C§

2(1 + h+) S0 Ayl A0 PR AL by )




e s E T - = - -
o w ) e "

Use binomial approximation and drop terms beyond second order:

Ry = — h+ = _}.LJF =5 hi + hi
21+hy)  20—hy) A1+ he)2 A= By )

=—1h (1 —hy)+ 3he (L 4+ hy) + 3R =hyhy + 302

- Now average over several wavelengths:

(Ry) = (hyhy + 1h2) = (—A%2 W% cos? 0 + L A% w?sin? 0
2t + 34
= —w? A% {cos® 0 — sin” § — 2 sin? 0) = —w? A% (sin 20) — 2w* A% (sin” 6)

2 2
=0~ 3(hihy)

~ Similarly: R.. = Ry = —Ry. = —R.,, and all other R,,, = 0.




 Exercise

The Dlagonal Metric Worksheet S expans1on for Ry is
Ri, = —5=Bos — 55Co03 + 752 BoBs — 75:CoCs3

4ABA330 = 4ACA300 + 4DBDOB3 + 55 D0Cs

Remember that
= BO—Cg——C() —Bgzh_|_
bon = bas - Cga == Don = —Coo = —Cs3 = hy

Show then that —th = Rtt = }.L_|_h_|_ == %hz_




This means that

R=—g"R,= (1-h )R+ (0 —W* )R, =—(0+0Rs+ ({1 +0)R:; =0

So the effectlve energy density of a plus—polanzed wave is:
row _ _(Gi) _ _(Ri)) _ | (hihy)

Iz (G 16mG

The effective energy density of a cross-polarized wave must be the
same, so the total energy density is

1

7k
327G <h hTT>

1 : S
i 167TG(h+h++hxhx> or g0 —

Gravitational wave energy fluxis (Exercise: Why flux = density?)

T 2 _TGW LG < tz R tt NI h h]k‘ TGW |
e 8rG = Szag e el =T ()




The problem for calculating luminosities: we have a different TT gauge
for every wave direction (and we have only done it for the z direction).

Conceptually, this is not difficult. For a wave in the +z direction, we:

1. Project H*" onto the plane perpendicular to the wave’s direction

2. Subtract half of the trace of the projected matrix from the two
remaining diagonal elements of the projected matrix.

Exercise: Consider an arbitrary A#” matrix for a wave moving in the
+x direction. Use the above steps to determine the transverse-traceless
version of this matrix for that direction.



The solution for doing this for arbitrary directions is to express these
operations in 3-tensor form that will give the correct components in

any (rotated) coordinate system.

[t turns out that this tensor projection operator projects a vector on the
plane perpendicular to a unit vector n’: P} =4} — n'n;

When 7’ is in the +z direction, this becomes

P; =

0
0

1
0

1 0 0

0
1_

0 0

0 0
0 0

T
0
1_4

1

0
0

0
1
0

0

Since a second-rank tensor ought to behave like the tensor product of
two vectors, the projection of 3-tensor ought to be P, PJI"™"



' B e Lu‘f'flz-f081t1es .
'ﬂau ge f or arbi itrar Y lirections

The trace of the projected matrix ought to be

[ =nw(PLPEI™Y — P PRI — (0 )(0F — 0P, )T
k

= (Mmn — NmNn — NNy + N NgN nn)Im” = =
So the complete transformation ought to be:
=L R
Energy flux of a gravitational wave: (h%f“T h Ty /327G
and we also know that: h%, = (2GM/R)L!

: . . e FeG s
So flux in a given direction is: flux = RQ(% P EET)

- Using the above (and lots of work) y1e1ds

flux in 7i- dlreotlon =
SRR 167TR2




~ Source L 1os1t1es .
-"Inte gratmg over all dire'\é:’i—j.oj? _s

To get the total luminosity, we integrate over all directions:

dE G . |
= 167TR2/ (/ (E i F 5T d¢> R’sinfdf
0 0

G

7.(- 27.(- ’ . . co e s
e 16_7'(' (/0 | (24 %w S Uyl ltzm{_m] +n'nIn"n" £, L,.,) d¢) sin 6 do

The quadrupole moment tensor does not depend on the wave direction:

0 iR SRS eSS 3 o 4G s e
= TR 7 == :
== m/o ([ do)sinoas 1 ity [ ([ nin do) simoas

-
167

~ Each integral is just a number that depends on the index values.
- When all is done: o

= Important!
o _5(%.%z]> Py
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F cl amentals

! e SR e
e -
gt

Model: point masses m1 and m2 > m; separated by a flxed distance D,
orbiting in the xy plane. We have:

7'12( L )D and Poi= ( o >D
ml—l—mg ' mi1+mo )

T1 = T1COSwt = CcOS wt and Y1 = rismwt = Sin wt
= My + M2 my + Mo

mlD : ‘ mlD 2
Lo = —T9 COSWL = — COS wt and Yo = —ToSINWi = — sin wt
e | mi + Mo mi + Mo

So components of the reduced quadrupole moment tensor are:

o / p(a? — ™) dV = my (2] — 3r}) + mo(23 — 3r3) = (myr} + mord)(cos? wt — 1)
Y A S e

= / p(ry — %nwyfrZ) dV = my(z1y1 — 0) + ma(22y2 — 0) = (m1r] + maors) cos wt sin wt
. src ; LN .

: Similarly, ¢ :»»(mlr% + méf%)(SiDQ TonNEn e %(mlﬁ + mor3) and all other £7 = 0.




 3 :.-’fiffraV1tat1onal aves frov jj lmanes .

Fundamentals

We can 31mp11fy using double- angle formulas and the definitions

mi1msa

d M =
,(ml = m2)2 an m1 -+ m2

9
Note also that

et 4 mord = my (Z22) 4 (a2 )
'_1 Lo " \my + mo *\my +mo

2 2 | 2
_ M1ma + Mamyj D2 _ mimo D= (mq + mo)

. = — nM D?
(m1 L m2)2 (m1 — m2)2 "l

So our reduced quadrupole moment tensor becomes

i , _g + cos 2wt sin 2wt 0
LY =1MnD? | sin2wt  : —cos2wt 0
N 0 0 2

3




The reduced quadrupole moment tensor is

£ = 2 MnD?

sin 2wt b

3
0

Its double timedérivative is:

L4 = —2MnD?*w? sin 2wt  —cos2wt 0

_§ + cos 2wt sin 2wt

cos 2wt
0 =2

' cos 2wt sin 2wt 0

0 0

=
0

3 -

0

- This is already in TT format for waves in the +z direction. The wave is

2G

19 (R L P
hTT g HTT T %TT e

SR

4G MnD?w?
R

cos 2w(t — R)

sin 2w(t — R)
0

sin 2w(t — R)
—cos2w(t — R)
O :

0
0




To find the waves radiated in another direction, use

Lk — (PLPI—1PYP, ) E* with P!=§i—n'n

or just calculate by eye: for the x direction:
= 0 0 0
0 cos2w(t— R) 0
0 0 —cos2w(t — R)

2GMnD?*w?

h?lZT: : R

Exercise: verify this by applying the steps:

(1) Project £ given below onto the plane perpendicular to the x direction
(2) Calculate the trace of the remaining components

(3) Subtract half the trace from each unaffected diagonal element

(4) Evaluate the wave at the retarded time.

S N Y cos2wt  sin2wt 0
1Y = —2MnD?*w? |sin2wt —cos2wt O
| 0 Calne

L —




jrav1tat10nal ]aves from lmanes

Total Lum1n051ty

The bmary s gravitational wave lummosﬂy is:

iy GH e 32(GM)%n2 Db
Sl SR 5G

Exercise: We can der1ve this pretty easﬂy from the equation below:

e [cos2wt sin2wt O]
= %w = *2M77D2w2 sin 2wt —cos2wt 0
= ' 0 0 0

Do it. In particular, where does the 32 come from?




:‘j""ff'f‘lﬂra' ]-"1tat1ona1 Waves from
”Effects of the ‘nergy Loss

What effect does this have on the system itself? Newton’s second law:

2 ‘
Gmimy mlv% = Gmy - V1 == mQDwQ =
== 1 —_— — e S
M= w?

D? 1 , D? 1

Use this to eliminate D: _
dE  32(GM)*nu® (GM\Y? 327
g - 5@

= (GMw)'/3

Energy comes at the expense of orbital energy, which is:

Gmima _G(nM2)w2/3 =
2D NG

E=— — 1 M(GMw)*3n

Our circular orbit approximation is not good if spiraling-in
~ happens too fast!




%?‘"~ff-:f-irav1tat1ona1 Waves frov 1 lmanes .
“Effects of the Energy Loss

One way of quantlfymg what “too fast” means: calculate dT/dt. Note

E=- M(GMw)2/377 = dE=— %M(GM)Wgw_l/?’ndw
dw e

T dE - M(GM)?P

AT’ dT'dw dE o = S _32772 (GM w13
dt  dwdE dt w? M (GM)2/3y 5G

1927y
=5

(GMw)®/3

dw 22 dUJ dE 9677 96 5/3 11/3
@& Ba 5 S

(GM)5/3(,011/3 = :

(m1m2)3/5 |

(my + mg)1/5

m1mao

3/5 |
Where /\/l = 773/5M _ <[m1 = m2]2> my + m2] —

“chirp mass”




HM Cancri (RX JO806.3+1527) consists of white dwarfs with masses of
0.55 and 0.27 solar masses (M = 1200 m, » = (0.149/0.822 = 0.22) with
period 321.5 s = 9.6 x 1010 m. Distance = 16,000 ly = 1.5 x 1020 m.

For this system GMw = 7.9 x 10-8. Orientation: nearly face on.

AGMnD2w?  4GM
el T

A_|_%

R R
dE 321
—— = L (GMw)"® = 2.4 x 10 W
dT 1927

-~ (GMw)?3 = —3.9 x 10711

This is one of the best “LISA verification binaries” known.

Exercise: Verify the power using G = 7.426 x 10-28 m/ kg to get the
power in kg/m, then convert to watts by multiplying by the appropriate
power of ¢ (which is what power?)



Grav1tat10nal Waves from Bmanes
Pre—ZOlS EV1dence for GWs

Tlll’l]l]l]llli‘l_

Line of Zero Orbital Decay

|
N
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~ (Graph from
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P 0 st—N ewtem an C al Cul at1 0 .

A more sophisticated model keeps track of corrections to the
Newtonian model as a power series in orders of v2. The resulting
expression for the waveform looks like

2GM77
R

-~ with y = (GMw)?? ~ GM/D ~ v? and
‘Bio) = —(1 + cos?i) cos 2V, |
| in? om
B(1/2) = _SlIlZ
= 8 M

- We would say that this expression is accurate to “second post-
~ Newtonian order” or 2PN.

R (GMw)2/3(B( Lo 1/23(1/2)_|_le(1)_|_ 3/23(3/2)+ 23(2))

(5 + cos® i) cos ¥ + 9(1 + cos” i) cos 3V




. ®_ USAdebug  File Edit  Randomize
s O @ O LISA Simulator

All angles are in degrees. The program won't 100 Rows _ LoadFile.. | | SaveLISAlnput |

Delete Row Delete To Erd

Input: : solve for a variatle whose value begins with a *.)

case Lm(sol) dm f(mHz) RClyD inc® psi@®@ pho theta phi X1 Lth1o phi® th2® ph20 alph® PN NO di(s)
1 6 z.oma 1099 36.9 i114.6 0.0 5.0 (268.5 i*@.¢ (*3.0 *0.0 *.0 0.0 0.0 4 i2 isp

tStepd4Spin  3.144960e+7
tStep 3.144320e+7

- Showlog | @ SaveOutput.. |

- Start | Current Case Progress: - CaseTime: 1580s

Output:

Starting LISA Case 1 on 5/16/18, 2:51 PM, glph@(deg) = .9, PN = 4, 2 Detectors, ¢t = 5@ s
Final data at time t = ©.9%98225 yrs, step = 631242 because 1 year has passed, (A1l followirg angles in degrees)
tmisol) am r/m o rQly) inc ast pho  theta pht X1 ph1@ ¥4 thz@ phz@
6.20 .020 30948.7 10202.9 36.99 114.60 .29 5.0 268.50 ©.0220 .29 .00 ©0.0200 2.09 .22
+ o.w 6-028 3.460165 1.8 0-14 0.24 0_24 O.w o-“ EXXXIXTEE EXIXXXEL EXXXXXXL EXXXXXRE EXXXEXXR ERXEXXREE
Initial: wfops(Hz) = 2.000220e-23 h(rc) = 7.48Ze-21 SNR = 4.35%¢+00 Yy = 0.005684
Final: wfobs(Hz) = 2.622211e-23 h(rc) = 7.482e-21 SNR = 4.359e+20 y = ©.005684
tau(us) = 147.6 Unc(Omega) (fraction of sky) = 1.92173e-@9 z = 0.02%14




Thank you for your kind

attention!

Ich bin der

Mann!




