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2   1. INTRODUCTION

[How to Use This Chapter. This chapter has a different structure than the remaining 
chapters in this text (see the Preface). When I teach from this text, I do not have my 
students read this chapter; instead, I present the material appearing in this chapter in 
the form of a 40-minute lecture on the first day of class. To support that lecture, I give 
the students a handout that provides an outline of the ideas and also the main figures 
that appear in this chapter. (The handout appears at the end of this chapter and also is 
available on the text’s website). I find this to be an efficient way to use time in the first 
session (since my students have done no reading in advance) and also an effective way 
to get them excited about the course.

I have therefore provided this chapter mostly for instructors (either to help them 
prepare for a similar lecture or to provide a reading assignment if they prefer to do other 
things with the first class session) and for those using this book for self-instruction. So 
that all users have a similar experience, I have structured this chapter more or less as a 
transcript of the opening lecture I give to my students, rather than using the workbook 
structure found in all of the remaining chapters.]

Introduction. General relativity, at its heart, is very simple. While it is true that its 
mathematics is at times challenging and its interpretation can be mind-bending, the 
theory’s core concepts are straightforward, plausible, and easy to understand. This sim-
plicity is the core of the theory’s great elegance and beauty, and sets a high standard that 
other modern physical theories struggle to emulate.

In what follows, I will provide in a few pages a complete overview of the theory’s 
conceptual structure. The entire rest of this book contains little more than details about 
and applications of these core ideas!

The Curious Equality of Gravitational and Inertial Mass. Consider first two par-
ticles with charges Q and q interacting electrostatically with each other but nothing else. 
Coulomb’s law and Newton’s second law then imply that

r
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where k is Coulomb’s constant, r is the particles’ separation, Fe is the magnitude of the 
electrostatic force that Q exerts on q, a is the magnitude of q’s acceleration, and mI is 
that particle’s inertial mass, expressing how strongly it resists being accelerated by a 
given force. We can (and typically do) interpret the quantity in parentheses as being 
the magnitude of the electric field E  that the particle with charge Q creates at the other 
particle’s position, and the quantity q as describing how strongly that other particle 
responds to or “couples” to that field.

Now consider two particles with masses M and mG interacting gravitationally with 
each other but nothing else. Newton’s law of universal gravitation and Newton’s second 
law then imply that
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where G is the universal gravitational constant, Fg is the magnitude of the gravitational 
force that M exerts on mG, and the other quantities are as before. Guided by equation 
1.1, we interpret the quantity in parentheses as being the magnitude of the gravitational 
field g  that the particle with mass M creates at the other particle’s position and mG as 
expressing how strongly that other particle couples with that field.

Now, I have put different subscripts on mG and mI to emphasize that, though they 
both describe properties of the same particle, conceptually these properties are quite 
different. The quantity mI expresses the particle’s inertial mass, that is, how strongly 
it resists being accelerated by a given force, while mG expresses its gravitational mass, 
that is, how strongly it couples to a gravitational field. These are completely distinct 
physical quantities expressing completely different concepts. We should no more ex-
pect mG  to be linked with mI than we would q to to be linked with mI  in equation 1.1.
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So, canceling mG and mI on both sides of equation 1.2 (as we all have been trained 
to do) makes the very big assumption that an object’s inertial mass is the same as its 
gravitational mass. Most physicists before Einstein simply assumed that this was true. 
But is it really? We now know that a gold nucleus, for example, has a smaller inertial 
mass (as measured in a mass spectrometer) than an equal number of protons and neu-
trons because of the gold nucleus’s large binding energy. Might the gold nucleus’s gravi-
tational mass depend on simply the number of nucleons and not on the binding energy? 
What is the experimental evidence?

To see how we might answer this question, divide both sides of equation 1.2 by mI 
but don’t assume that mG and mI cancel. We get for the acceleration

r
am

mGM
I

G
2 =c cm m  (1.3)

If mG and mI are not the same, then the ratio mG /mI could be different for different 
objects, which would imply that they would experience different accelerations in the 
same gravitational field. This is something that we can investigate experimentally.

Galileo and Newton both provided some basic evidence for the equality of mG and 
mI (to about one part in a thousand) during the 1600s, and this satisfied the community 
for a long time. However, the question began to interest physicists again in the late 
1800s. Starting with a famous experiment performed by Eötvös in 1890, physicists dur-
ing the 20th century have designed increasingly sophisticated and accurate experiments 
using a number of different techniques. Current experiments have established that mI 
and mG are equal to within at least one part in a billion in a wide variety of circum-
stances, and the most precise experiments to date (which use a sensitive torsion bal-
ance to look for differences in the acceleration of different objects objects in the sun’s 
gravitational field; see the website www.npl.washington.edu/eotwash/ for details) yield 
uncertainties of a few parts in 1013.

Now, the fact that these two seemingly distinct quantities are the same to almost 13 
significant digits begs for explanation. General relativity provides a simple and elegant 
explanation.

The Geodesic Hypothesis. The first step toward this explanation involves recogniz-
ing that if mG were really equal to mI, then equation 1.3 would imply that all objects in 
a given gravitational field experience the same acceleration, and thus that all objects 
would follow the same trajectory in a given gravitational field if launched from the 
same position with the same initial velocity, even if they differ in mass and/or other 
characteristics. Note that such a statement is not true in electrostatics: objects with dif-
ferent charges follow different trajectories in a given electric field, even if their initial 
positions and velocities are the same. But in the gravitational case, it is as if the tra-
jectory were determined by the space through which the objects move rather than by 
anything about the objects.

But how can empty space determine a trajectory? In the two-dimensional space 
represented by a flat piece of paper, there is a unique path between any two points that 
has the shortest pathlength: that path is a straight line. In the two-dimensional space 
corresponding to the surface of a globe, the analogous paths are “great circles.” Indeed, 
in the two-dimensional space corresponding to the surface of any smooth convex three-
dimensional object, we can find the shortest path between two points by stretching a 
string tightly between those points. In a general space, we call the paths that represent 
the shortest (more technically, the extremal) distance between two points a geodesic. A 
space’s geometric characteristics therefore define unique geodesic paths in that space.1

1. Technically, if two points in a space are separated by a distances large compared to the
scale over which the space’s curvature becomes significant, one may be able to find more than 
one geodesic connecting the points. For example, the poles of a sphere can be connected by an 
infinite number of great circles. But if the points are separated by distances small compared to 
that scale, the geodesic between a given pair of points is unique. Let’s assume this.
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The geodesic hypothesis of general relativity asserts simply that

A free particle follows a geodesic in spacetime.

(where “a free particle” is one free of non-gravitational interactions). According to this 
hypothesis, a gravitational field shapes spacetime, which in turn specifies the geodesics 
that particles must follow.

The geodesic hypothesis makes sense only in spacetime, not in three-dimensional 
space. To see this, consider a thrown ball moving in a parabolic trajectory from point A 
to point B in the space near the earth’s surface. But I could also fire a bullet from point 
A in such a way that it passes through point B: because of its greater speed, such a bul-
let would follow a much shallower parabola between the points (see figure 1.1). But the 
definition of a geodesic implies that there should be a unique geodesic between points 
A and B. Therefore the ball and bullet, even though both are “free,” cannot both be fol-
lowing a geodesic, contrary to the hypothesis!

However, if the ball and bullet follow geodesics in spacetime, the apparent paradox 
evaporates. Figure 1.2 shows graphs of the ball’s and bullet’s trajectories in space and 
time. From this graph, we can draw two important conclusions. First, we see that even 
though the ball and bullet start out from point A at the same time (by hypothesis), they 
do not end up at point B at the same time, so they are not traveling between the same 
two points in spacetime. Two objects that do travel between between A and B in the 
same time would also have to have the same initial velocity and therefore would follow 
exactly the same trajectory in both space and time.

Second, though the paths of the ball and bullet are clearly different geodesic paths 
when plotted in spacetime, if we measure time in meters of light-travel time, then 
figure 1.2 shows that both have approximately the same radius of curvature (roughly 
1 light-year = 1 ly). These different geodesics thus share a common curvature that they 
plausibly get from the spacetime around the earth.

ctB = c(0.02 s) 
= 6 × 106 m

ctBl = c(2 s) = 
6 × 108 m

to center of curvature to center of curvature

ball

R
R R

bullet

z

x

ct

A

B

Bl

h = 5 m

h = 0.5 mm

(not to scale)

FIG 1.2 Plotted in spacetime, the bullet and ball paths have different ending times tB and tB´, 
so their final points B and Bl in spacetime are not the same. However, if we express displace-
ments along the time axis of this spacetime graph in terms of ct (where c is the invariant speed 
of light) so that all axes have the same units of meters, then the two paths do turn out to have 
approximately the same radius of curvature R ~ 1 light-year = 1 ly (see problem P1.1). Note that 
two projectiles moving between the same positions in space and time would also have to have 
the same initial speed and thus would follow the same (unique) path in spacetime. (Adapted 
from Misner, Thorne, and Wheeler, Gravitation, Freeman, 1973, p. 33.)

10 m

R ≈ 1 ly

FIG. 1.1 The paths of a freely-falling 
bullet and a ball moving between 
points A and B in space near the earth 
are different: there is no unique path 
for a freely-falling object connecting 
two points in space. (Adapted from 
Misner, Thorne, and Wheeler,  
Gravitation, Freeman, 1973, p. 33.)

A B
10 m

500 m/s

5 m/s

0.5 mm5 m
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Why Gravitational Mass Is Inertial Mass. If we accept the geodesic hypothesis, 
then gravitational and inertial mass are the same thing, as I will now argue. Note that 
near the earth’s surface, the geodesic for an object released from rest is a trajectory 
where the object accelerates downward at a rate of g = 9.8 m/s2. According to the geo-
desic hypothesis, this is the “natural” path for a free object to follow, analogous to the 
straight-line geodesic an object would “naturally” follow in deep space (far from any 
gravitating objects). Now in deep space, accelerating an object away from a straight-
line geodesic requires one to exert a force on the object. Analogously, if I hold an object 
at rest near the earth, I must exert an upward force on the object sufficient to accelerate 
it at a rate of g = 9.8 m/s2 relative to the downward geodesic it naturally wants to fol-
low. The magnitude of force required, according to Newton’s second law, is simply mIg, 
where mI is the object’s inertial mass.

However, it is precisely the magnitude of the upward force required to hold an ob-
ject at rest that scales and balances measure when we “weigh” an object. In Newtonian 
mechanics, we imagine this upward force to be balanced by (and equal in magnitude to) 
a “gravitational force” mGg acting on the object, and thus we imagine the scale to reg-
ister the object’s “weight,” which (after division by g) yields the object’s gravitational 
mass mG. But from the perspective of general relativity, the only real force acting on the 
object is the upward force (since a net force is required to accelerate an object relative 
to its geodesic), and that net force has a magnitude of mIg. Therefore, when we think 
we are measuring an object’s gravitational mass using a scale, we are really measuring 
its resistance to acceleration. So of course mG = mI: they are really the same thing!

Inertial and Noninertial Reference Frames. The paragraph above implies that in 
general relativity, we consider an object’s “weight” (that is, the gravitational force act-
ing on it) to be fictitious, not real. How can this be? To answer this question, we have to 
rethink the definition of inertial and noninertial reference frames.

In Newtonian mechanics, we typically define an inertial reference frame (IRF) to 
be “a frame in which a free object initially at rest remains at rest.” However, it seems 
that we immediately waive this definition when we treat a reference frame at rest on the 
earth’s surface as being even approximately inertial, since a free object initially at rest 
obviously does not remain at rest, but rather accelerates downward at a rate of g! The 
Newtonian explanation, of course, is that an object near the earth’s surface is not “free,” 
but rather subject to a gravitational force exerted on it by the earth, and that is why it 
accelerates. However, the only evidence for this “force” is the observed acceleration of 
a dropped object, which is unnatural only if we assume that a reference frame at rest on 
the earth’s surface is inertial.

In general relativity, we take the definition of an IRF as given above literally and 
seriously. A reference frame at rest on the earth’s surface is therefore not inertial, since 
a free object does not remain at rest. The only reference frames near the earth that are 
even approximately inertial are freely falling frames. We know, for example, that in a 
freely falling frame such as an orbiting space shuttle, an object placed at rest in midair 
remains floating at rest, consistent with the definition of an IRF!

Of course a Newtonian physicist would claim that this is an illusion, because both 
the shuttle and object happen to fall toward the earth with the same acceleration, and 
so remain at rest with each other. So is the decision about whether to take a frame at 
rest on the earth’s surface or a freely falling frame as being an IRF merely a matter of 
perspective? No! One of Einstein’s greatest triumphs was to show that this choice has 
physical consequences that we can examine experimentally.

The Equivalence Principle. Einstein pointed out that if a freely falling reference 
frame is truly an IRF, then it should be physically equivalent to a freely floating frame 
in deep space (far from any massive bodies), in the sense that any experiment per-
formed in a freely falling frame should yield the same result as in the deep-space frame. 
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Similarly, a frame at rest near the earth’s surface, since it is accelerating upward at a rate 
of g = 9.8 m/s2 with respect to the inertial frames in its vicinity, should be physically 
equivalent to a rocket-powered noninertial frame accelerating at a rate of g relative to 
freely floating frames in deep space. This is one statement of what physicists call Ein-
stein’s Equivalence Principle.

Consider the following experimental test of this principle. Imagine that light of a 
certain frequency is emitted by a source attached to the ceiling of a frame at rest on the 
surface of the earth. This light is detected, and its frequency measured, by a detector 
on the floor of that frame. If such a frame is really inertial (in contradiction to general 
relativity), then the detected light will be observed to have the same frequency as the 
emitted light. If such a frame is noninertial (as required by the Equivalence Principle), 
on the other hand, then the light will be observed to be slightly blue-shifted, as I will 
now argue.

The Equivalence Principle requires that what we observe in a frame at rest near 
the earth’s surface should be the same as what we observe in an accelerating frame in 
deep space. Imagine that such an accelerating frame happens to be at rest with respect 
to a floating IRF at the time (t = 0) that a certain photon is emitted by the accelerat-
ing frame’s ceiling source (see figure 1.3). In the floating IRF, that photon’s frequency 
remains constant. But by the time tl the photon reaches the detector on the floor of the 
accelerating frame, that accelerating frame is moving upward relative to the IRF at a 
speed of v gt= l. Therefore, in the floating IRF, the detector at the time of reception is 
moving with this speed toward the source (which was at rest in the IRF at the time of 
emission). Therefore, the detector will observe the light to be slightly Doppler-shifted 
toward the blue. This shift will be very small (because tl will be small: see problem 
P1.2 for a calculation of the magnitude), but nonzero.

The effect is indeed so small that it eluded firm experimental verification for more 
than 50 years after Einstein first predicted it. However, in 1959, R. V. Pound and G. A. 
Rebka were able to verify this effect in the reference frame corresponding to a 22.5-m 
high tower in the Jefferson Physical Laboratory at Harvard University (see Pound and 
Rebka, “Gravitational Redshift in Nuclear Resonance” Phys. Rev. Lett. 3, 439–441, 
1959). This experiment used gamma rays from a radioactive sample of Fe-57 as a source, 
and took advantage of the Mössbauer effect to make a very precise measurement of the 
frequency shift in the gamma rays as they were absorbed by an Fe-57 sample at the 
other end of the tower. This experiment verified the predicted blue-shift to an uncer-
tainty of about 10%. Subsequent experiments have verified this in earth-based frames 
to within one part in 104.

We see that experimental evidence firmly supports the conclusion that frames at 
rest on the earth’s surface are really noninertial, and consequently that freely falling 
frames are inertial. This means that the “force of gravity” that appears to press us to 
the floor in a frame at rest near the earth is really a fictitious force, as fictitious as the 
force that appears to press us to the floor in a frame that is accelerating upward. Indeed, 
this force vanishes in a truly inertial (that is, freely falling) frame: in such a frame, 
objects are exposed as being truly “weightless.” Any force that appears or disappears 
depending on our choice of reference frame cannot be real.

The Reality of Gravity. So is gravity entirely fictitious? Is there nothing about gravity 
that is real (that is, observable in an inertial frame)? The answer to both of these ques-
tions is no. Gravity is real, and does have an aspect observable in an inertial frame, it is 
just not the downward force we usually consider “gravity.”

To see what this aspect is, consider a large room freely falling toward the earth. 
Imagine that we place four balls so that they float initially at rest with respect to the 
room; one near the room’s ceiling, one near its floor, one near a wall, and one near the 
opposite wall (see figure 1.4). What happens to these balls as the room falls?

vv

(a)

(b)

FIG. 1.3 (a) At the instant that an ac-
celerating frame in deep space is at 
rest with respect to a floating inertial 
frame (IRF) in deep space, a photon is 
emitted by a source in the accelerating 
frame’s ceiling. (b) By the time that 
the photon reaches the detector on the 
floor, the accelerating frame (and thus 
the detector) is moving upward relative 
to the IRF. The detector will therefore 
measure the photon’s frequency to 
be blue-shifted. Since an accelerat-
ing frame in deep space is physically 
equivalent to a frame at rest on the 
earth’s surface, we would expect to see 
the photon blue-shifted in a frame on 
the earth as well.

photon

detector

source

accelerating frame

accelerating frame

floating IRF
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To predict what happens, let us retreat for the moment back into the Newtonian 
picture (which will predict the correct behavior even if it does not provide the correct 
interpretation). In that picture, the room’s center of mass falls toward the earth with a 
certain acceleration. The ball near the ceiling is just a bit farther from the earth’s center 
than the room’s center of mass, so it experiences a slightly smaller acceleration, just 
as the ball near the floor experiences a slightly larger acceleration. The balls near the 
walls accelerate toward the earth’s center and thus along lines angled slightly inward 
with respect to the direction along which the room accelerates. So as time passes, we 
will observe the top and bottom balls to accelerate away from the room’s center, while 
the side balls will accelerate toward the room’s center. This is not the behavior that 
we would observe in a frame floating in deep space: in such a frame, the balls would 
remain strictly at rest.

The relative accelerations of off-center free bodies, then, is something we do ob-
serve in an inertial (freely falling) frame near a gravitating object, but not in an inertial 
frame in deep space. These relative accelerations therefore represent a frame-indepen-
dent (and thus real) indication that we must be near a gravitating object.

We call this aspect of gravity the tidal effect of a gravitational field, because (as 
Newton himself first realized) this effect explains tides on the earth’s surface. Note that 
we can consider the earth to be a frame freely falling in the moon’s gravitational field. 
Like the balls in our freely falling room, ocean waters on the sides of the earth closest to 
and farthest from the moon will accelerate away from the earth’s center and thus bulge 
outward, while ocean waters on the sides will press inward. This explains the 12-hour 
tidal variation of the depth of the ocean.

Spacetime Is Curved. How do we interpret these tidal effects from the perspective of 
general relativity? Figure 1.5 shows a spacetime graph of the trajectories of the two side 
balls in our falling-room experiment. Since these balls are initially at rest with respect 
to each other, their paths in spacetime are initially parallel (they remain at an initially 
constant separation as time passes). As time progresses, however, they eventually begin 
to move toward each other with increasing speed, so the paths curve toward each other 
as shown.

x

t

FIG. 1.5 Plotted in spacetime, the geo-
desics that the balls in figure 1.4 follow 
(as measured in the freely-falling 
frame) are initially parallel (the balls 
have initially constant separation), 
but gradually bend toward each other 
(because their separation eventually 
decreases). This bending of initial 
parallel lines signals that the underly-
ing spacetime is curved.

earth

frame floating in deep space

freely-
falling 
frame 
near the 
earth

(a) (b)

FIG. 1.4 (a) Because the gravitational field of the earth (indeed, any gravitating object) is non-
uniform, off-center floating balls in a freely falling frame will experience small accelerations 
relative to the frame’s center of mass. (b) Such accelerations are not observed in a frame float-
ing in deep space: floating balls initially at rest remain truly at rest.

toward the earth’s center
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But remember that these paths are geodesics (that is, the straightest possible lines) 
in spacetime. A fundamental axiom of Euclidean (flat plane) geometry is that initially 
parallel straight lines remain parallel. Here we see that initially parallel geodesics in 
spacetime (the straightest possible lines we have in spacetime) do not remain parallel. 
While this violates Euclid’s axiom for plane geometry, this behavior is typical of curved 
space. For example, on the two-dimensional space corresponding to the surface of a 
globe, lines of longitude are great circles (geodesics). These lines are parallel at the 
equator but do not remain parallel as one goes toward the poles. We conclude that the 
relative acceleration of geodesics near a gravitating object indicates that the geometry 
of spacetime is curved (non-Euclidean) there. This curvature of spacetime is the frame-
independent signal that a gravitational field is present. Moreover, once we understand 
exactly how spacetime is curved near a gravitating body, we can calculate that space-
time’s geodesics and therefore predict how freely-falling bodies will move.

The Einstein Equation. Given the geodesic hypothesis, then, the central task of a 
theory of gravity is to predict how a gravitating body affects the curvature of space-
time. On November 25, 1915, Einstein completed the theory of general relativity by 
proposing an equation that linked the presence of matter and energy to the curvature of 
spacetime, an equation that we now call the Einstein equation (or the Einstein Field 
Equation). This equation reads as follows:

G GT8r=no no  (1.4)

where Gno  is a 4 × 4 matrix (tensor) that describes the curvature of spacetime at a given 
point in space and time, G is the universal gravitational constant, and Tno  is a 4 × 4 
matrix describing the density and flow of matter and energy at the same point in space 
and time. This equation and the geodesic equation used to calculate geodesics in an 
arbitrarily curved spacetime comprise the core equations of general relativity.

General Relativity in a Nutshell. In the chapters that follow, we will explore in great 
detail the mathematical meaning of both the Einstein equation and the geodesic equa-
tion. For our purposes at the moment, however, it is enough to understand their physical 
meaning. To summarize, if we know how spacetime is curved, we can use the geode-
sic equation (the mathematical equivalent of stretching a string between two points in 
space time) to calculate how objects will move in that spacetime. If we know the density 
and flow of matter and energy in spacetime, we can use the Einstein equation to calcu-
late how spacetime is curved. The great physicist John Archibald Wheeler summarized 
the theory’s essence even more briefly this way:

 Spacetime tells matter how to move; matter tells spacetime how to curve.

This is general relativity in a nutshell. What could be simpler? Our task in what follows 
will simply involve unfolding the implications of this simple but profound statement.
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HOMEWORK PROBLEMS on the floor a distance d = 25 m below (the laboratory is 
in a tower). This lab is equivalent (from the point of view 
of the gross effects of gravity) to an identical lab acceler-
ating upward in deep space with a uniform acceleration 
of magnitude g. Imagine that we observe the flash being 
emitted and detected in an inertial lab surrounding the 
accelerating lab. For the sake of simplicity, imagine that 
the two labs are at rest with respect to each other at the 
instant the flash is emitted. In the time it takes the flash to 
reach the floor (as measured in the inertial lab), the accel-
erating lab attains a certain speed v relative to the inertial 
lab. Thus (according to observers in the inertial lab) the 
floor detector in the accelerated lab is moving toward the 
laser with speed v at the time the pulse is detected, so the 
floor detector measures the laser light’s wavelength to be 
blue-shifted to the value m given by the relativistic Dop-
pler shift formula m/m0 = ( / )/( / )v vc c1 1- + , where 
m0 is the wavelength of the light as emitted by the laser 
and v is the detector’s speed relative to the laser at the 
time of detection.
a. Argue that the fractional shift in wavelength is

c
gd

0

0
2.

m
m m- (1.1)

when gd/c2 << 1 and v/c << 1. (Hint: You will find 
the binomial approximation (1 + x)n . 1 + nx helpful. 
This approximation is accurate to order x2.)

b. What would be the fractional shift in wavelength in a
lab on the earth’s surface?

c. What would be the fractional shift in wavelength if
the lab were located on the surface of a neutron star
having a mass of M = 3.0 × 1030 kg (. 1.5 the mass
of the sun) and a radius of R = 12 km?  [Hint: First
estimate the magnitude of g  using Newton’s law of
universal gravitation. You can find the value of the
universal gravitational constant G on the inside front
cover.]

P1.3 Another consequence of the Equivalence Principle 
is that light will be bent in a gravitational field. This has 
never been measured on the surface of the earth, but was 
verified qualitatively by observing starlight passing near 
the sun’s edge during a total eclipse in 1919. Why can’t 
this experiment be done on the earth’s surface? Let’s pre-
dict how much bending we should see  in a laboratory at 
rest on the earth’s surface. What one would observe in 
such a laboratory should be the same as what one would 
observe in a laboratory accelerating in deep space with 
a uniform acceleration of a g=- , where g  is the local 
acceleration of gravity on the earth’s surface. Imagine 
that a laser at one end of the laboratory emits a beam of 
light that originally travels parallel to the laboratory floor. 

R

( )sinD R2
1

2
1 i=

h

2
1 i 2

1 i

parabola ≈ circular arc

base

( )cosR 2
1 i

FIG. 1.6 This figure illustrates how we can model a parabola 
with height h and base D by a circular arc having an appropri-
ate radius R.

P1.1 This problem explores the claims made in figure 1.2. 
a. Show that the values of h and t for the bullet and ball

trajectories in that figure are consistent with a gravita-
tional acceleration of g = 10 m/s2.

b. The ball’s and bullet’s paths in the spacetime graph in
figure 1.2 are actually very gently curved parabolas
when you consider how long their bases are in that
diagram. As shown in figure 1.6, we can use a cir-
cular arc as an excellent approximation for a gently
curved parabola. We can calculate that arc’s effec-
tive radius R, and thus quantify the path’s curvature
in a direct and reasonably intuitive way. Note from
the figure that the peak of a circular arc that spans
an angle i is a distance R away from the circle’s cen-
ter, but the center of the arc’s base is only ( )cosR 2

1 i
from the center. The height of the arc’s peak above
its base is therefore [ ( )]cosh R 1 2

1 i= - . Since the 
angle i will be quite small in this case, we can ex-
pand ( )cos 2

1 i  in a power series and drop higher order 
terms: ( ) ( )cos 12

1
2
1
2
1 2.i i- = 1 8

1 2i-  (assuming 
that i is in radians and is much smaller than 1). In the
same limit, ( )sin 2

1
2
1.i i , so the base’s length D is 

thus ( )sinR R2 2
1 .i i . Now, in figure 1.2, the length 

of each curve’s base in the spacetime diagram is al-
most exactly equal to ct, where t is the time required
for the projectile to go between spatial points A and
B. Combine the approximations above with the given
values of h and t for each path to show that effective
radii of curvature of the ball’s and bullet’s paths in
figure 1.2 are both approximately R . 1016 m . 1 ly.
Also check that i is indeed very small for both paths,
justifying the approximations we have made.

P1.2 Imagine that a laser on the ceiling of a laboratory  
on the earth emits a flash of light directed toward a sensor 
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P1.3 (continued)
This light shines on the opposite wall of the laboratory a 
horizontal distance d = 3.0 m away from the laser.
a. Find the magnitude of this deflection in a laboratory

on the surface of the earth.
b. Find the magnitude of this deflection if the laboratory

sits on the surface of a neutron star having a mass of 
M = 3.0 × 1030 kg (. 1.5 the mass of the sun) and a 
radius of R = 12 km. [Hint: First estimate the magni-
tude of g  using Newton’s law of universal gravitation. 
You can find the value of the universal gravitational 
constant G on the inside front cover.]

P1.4 We can calculate how much starlight passing the 
sun’s edge will be deflected (according to the Equiva-
lence Principle) as follows. Assume that the light’s de-
flection is so small that we can approximate a given pho-
ton’s trajectory by a straight line along the x axis that 
grazes the sun’s surface, as shown in figure 1.7. Assume 
that the photon has the same acceleration as any other 
object as it passes near the sun and that this acceleration 
has the magnitude a  = GM/r2 predicted by Newtonian 
physics (where G = 6.67 × 10–11 N·m2/kg2,  M is the sun’s 
mass, and r is the distance between the photon and the 
sun’s center), but that the photon’s speed remains . c (the 
speed of light) during the whole process. As figure 1.7 
shows, the sine of the deflection angle d will be equal 
to vy/c, where vy is the y component of the photon’s final 
velocity vv . We can determine vy  by integrating ay dt over 
the entire trajectory, which you can do by expressing ay 
as a function of x and R, writing dt = dx/c, and integrating 
from x = –3 to +3. Look up the resulting integral and 
note that for small angles, sin d . d (when d is expressed 
in radians).  Show therefore that the predicted deflection 
is d = 4.2 × 10–6 rad = 0.87 seconds of arc (which is small 
enough to justify the various approximations we have 
made above).

[Note: Einstein published this prediction in 1907 after 
first proposing the Equivalence Principle. However, as 
we will see in chapter 13, the full theory of general rela-
tivity actually predicts twice this deflection, as Einstein 
noted in 1915, and the latter result was verified during 
the 1919 eclipse. It turns out that while the Equivalence 
Principle works well in reference frames that are small 
enough compared to the scale over which any enclosed 
gravitational field varies significantly, in the calculation 
above we are implicitly using a frame that is large com-
pared to that scale. In such a case, as Einstein himself 
found, a naive application of the Equivalence Principle 
yields incorrect results.]

P1.5 Imagine a freely falling reference frame near the 
surface of the earth. This reference frame has the form 
of a cube 44 m on a side. Imagine that floating balls are 
placed at point A in the frame’s center, at point B 22 me-
ters above A, and at point C 22 m below A. The frame’s 
center of mass will fall at the same rate as the ball at A 
which is located at the frame’s center. But due to tidal ef-
fects, the balls at B and C will fall a bit slower and faster 
respectively than the frame as a whole. What are the 
magnitudes of the accelerations of the balls at B and C 
relative to A (that is, what are the magnitudes of B Aa a-  
and C Aa a- )?  Feel free to use Newtonian physics in 
this calculation: we will show later that general relativity 
leads to the same results near the surface of the earth to 
many decimal places.  (Hint: You will need to use the 
binomial approximation (1 + x)n ≈ 1 + nx. If you do not, 
you will find that your calculator does not keep enough 
digits to yield an accurate result. )

P1.6 Many smart phones (such as the iPhone) have built-
in three-axis accelerometers. These accelerometers typi-
cally measure the x, y, and z force components per unit 
mass that must be applied to an internal proof mass to 
hold it at rest with respect to the rest of the phone. Now, if 
the phone is freely falling, it represents an inertial refer-
ence frame within which the internal proof mass should 
float without requiring any forces to hold it at rest. Find 
an app for your smartphone that is capable of logging 
acceleration data for all three axes, run the app, and then 
throw your phone in a nice parabola onto a suitable soft 
surface. (Note that you are responsible for any mishaps!) 
Use your collected data to argue that the phone is indeed 
an inertial reference frame during the time interval be-
tween leaving your hand and landing on the soft surface.

x

y
vyd

vv

actual trajectory
(exaggerated)

approximate trajectory

sun

. R

| x |
r

FIG. 1.7 This figure illustrates the trajectory of a photon pass-
ing near the sun’s edge. Its deflection has been hugely exagger-
ated. The sun’s radius R is about 700,000 km.

photon

Two-sided handout for a lecture 
based on this material



GENERAL RELATIVITY IN A NUTSHELL

I. FUNDAMENTAL IDEAS
A. The curious equality of gravitational mass and inertial mass

1. Illustrating the distinction:
(a) Compare Coulomb’s law with Newton’s law of universal gravitation.
(b) Note how the m’s on either side of GMmG /r2 = mIa express different things.

2. Experimental tests show that inertial mass = gravitational mass to 13 decimal places.
3. It is not credible that this is an accident!

B. The Geodesic Hypothesis
1. A plausibility argument: the path followed by a falling object (since it is independent

of the object’s properties) seems to be a property of the space, not the object.
2. What is a geodesic, anyway?

(a) It is the straightest possible path (or path of “extremal” length) through a space.
(b) The geometry of the space uniquely specifies such paths.

3. A statement of the hypothesis: A free particle follows a geodesic in spacetime.
4. Note: This works only if the paths are geodesics in spacetime (see figures 1.1 and 1.2).

II. IMPLICATIONS
A. “Weight” really expresses an object’s resistance to acceleration (relative to its geodesic)!

1. An object’s geodesic near the earth accelerates downward at g = GM/r2 = 9.8 m/s2.
2. To hold an object at rest, we give it an upward acceleration g relative to its geodesic.
3. This requires an upward force of mIg = mIGM/r2.
4. So the m’s on either side of GMmG /r2 = mIa really express the same thing after all!

B. Inertial reference frames (IRFs) and freely falling reference frames
1. Definition of an IRF: a free object at rest (in the frame) remains at rest
2. Near a gravitating object, only freely falling frames are genuine IRFs.

C. The Equivalence Principle
1. A frame on earth’s surface is analogous to an accelerating frame in deep space.
2. Implications:

(a) bending of light in a gravitational field (see problem P1.3)
(b) gravitational blue-shift (see figure 1.3)

 III. THE REALITY OF GRAVITY
A. What is real (that is, frame-independent) about gravity?

1. Is it totally fictitious like “centrifugal force”?
2. No! Tidal effects of gravity cannot be erased by change of reference frame (figure 1.4).
3. So initially parallel paths of falling objects do not remain parallel (figure 1.5).
4. Implication: spacetime must be curved (i.e., have a non-Euclidean geometry).

B. The Einstein equation
1. Gno = 8rGTno, where

(a) Gno = 4 × 4 symmetric tensor describing curvature of spacetime at a point
(b) Tno = 4 × 4 symmetric tensor describing the density of mass-energy at that point

2. This is the link between curvature of spacetime and mass that causes it.

 IV. GENERAL RELATIVITY IN A NUTSHELL
Spacetime tells matter how to move, matter tells spacetime how to curve (J. A. Wheeler)
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